Conference Proceedings

Listed below are the conference papers accepted to the International Conference on Learning Representations (ICLR) 2013.



Discrete Restricted Boltzmann Machines [video]

  Guido F. Montufar, Jason Morton


Feature grouping from spatially constrained multiplicative interaction [video]

  Felix Bauer, Roland Memisevic


Efficient Learning of Domain-invariant Image Representations[video]

              Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, Kate Saenko


Indoor Semantic Segmentation using depth information [video]

  Camille Couprie, Clément Farabet, Laurent Najman, Yann LeCun


The Neural Representation Benchmark and its Evaluation on Brain and Machine [video]

  Charles F. Cadieu, Ha Hong, Dan Yamins, Nicolas Pinto, Najib J. Majaj, James J. DiCarlo


Feature Learning in Deep Neural Networks - A Study on Speech Recognition Tasks [video]

              Dong Yu, Michael L. Seltzer, Jinyu Li, Jui-Ting Huang, Frank Seide


Barnes-Hut-SNE [video]

  Laurens van der Maaten


Herded Gibbs Sampling [video]

 

               Luke Bornn, Yutian Chen, Nando de Freitas, Mareija Eskelin, Jing Fang, Max Welling


Information Theoretic Learning with Infinitely Divisible Kernels [video]

   Luis G. Sanchez Giraldo, Jose C. Principe


What Regularized Auto-Encoders Learn from the Data Generating Distribution [video]

   Guillaume Alain, Yoshua Bengio


Discriminative Recurrent Sparse Auto-Encoders [video]

   Jason Tyler Rolfe, Yann LeCun


Complexity of Representation and Inference in Compositional Models with Part Sharing [video]

   Alan L. Yuille, Roozbeh Mottaghi


Stochastic Pooling for Regularization of Deep Convolutional Neural Networks [video]

   Matthew D. Zeiler, Rob Fergus


Knowledge Matters: Importance of Prior Information for Optimization [video]

   Caglar Gulcehre, Yoshua Bengio


Local Component Analysis

                            Nicolas Le Roux, Francis Bach


The Diagonalized Newton Algorithm for Nonnegative Matrix Factorization

                           Hugo Van hamme


Jitter-Adaptive Dictionary Learning - Application to Multi-Trial Neuroelectric Signals

                            Sebastian Hitziger, Maureen Clerc, Alexandre Gramfort, Sandrine Saillet, Christian Bénar, Théodore Papadopoulo


Adaptive learning rates and parallelization for stochastic, sparse, non-smooth gradients

                            Tom Schaul, Yann LeCun


Training Neural Networks with Stochastic Hessian-Free Optimization

                            Ryan Kiros


Metric-Free Natural Gradient for Joint-Training of Boltzmann Machines

                            Guillaume Desjardins, Razvan Pascanu, Aaron Courville, Yoshua Bengio


Block Coordinate Descent for Sparse NMF

                            Vamsi K. Potluru, Sergey M. Plis, Jonathan Le Roux, Barak A. Pearlmutter, Vince D. Calhoun, Thomas P. Hayes


Cutting Recursive Autoencoder Trees

                            Christian Scheible, Hinrich Schuetze


Saturating Auto-Encoder

                            Rostislav Goroshin, Yann LeCun


Factorized Topic Models

                            Cheng Zhang, Carl Henrik Ek, Hedvig Kjellstrom


Comments