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TEXT RECOGNITION

Localized text image as input, character string as output
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TEXT RECOGNITION
State of the art — constrained text recognition

word classification [Jaderberg, NIPS DLW 2014]

static ngram and word language model [Bissacco, ICCV 2013]
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TEXT RECOGNITION
State of the art — constrained text recognition

word classification [Jaderberg, NIPS DLW 2014]

static ngram and word language model [Bissacco, ICCV 2013]

Random string

New, unmodeled word
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TEXT RECOGNITION
Unconstrained text recognition

e.g. for house numbers [Goodfellow, ICLR 2014]
business names, phone numbers, emaills, etc

Random string

> RGOQGAN323

New, unmodeled word




OVERVIEW

* Two models for text recognition [Jaderberg, NIPS DLW 2014]
» Character Sequence Model
» Bag-of-N-grams Model

e Joint formulation
» CRF to construct graph
» Structured output loss
» Use back-propagation for joint optimization

* Experiments
» Generalize to perform zero-shot recognition
» When constrained recover performance



CHARACTER SEQUENCE MODEL

Deep CNN to encode image.
Per-character decoder.

w = (c1,¢2,...,CN)
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5 convolutional layers, 2 FC layers, RelLU, max-pooling
23 output classifiers for 37 classes (0-9,a-z,null)

Fixed 32x100 input size — distorts aspect ratio
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CHARACTER SEQUENCE MODEL

Deep CNN to encode image.
Per-character decoder.

w = (c1,¢2,...,CN)
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BAG-OF-N-GRAMS MODEL

Represent string by the character N-grams contained
within the string
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BAG-OF-N-GRAMS MODEL

Deep CNN to encode image.
N-grams detection vector output.
_imited (10k) set of modeled N-grams.

N-gram detection vector
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JOINT MODEL

Can we combine these two representations?
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JOINT MODEL

S(w,x)
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J OINT IVIODEL ‘}aximum number of chars
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JOINT MODEL

]Vhl‘ |lw| min(N,|w|—i+1)
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STRUCTURED OUTPUT LOSS

Score of ground-truth word should be greater than or
equal to the highest scoring incorrect word + margin.

S(we, z) > p+ S(w*, x)

where S(w*,x) = maxyxy, S(w, )

Enforcing as soft constraint leads to a hinge loss

max max(0, u+ S(w, ) — S(wWes, xi))



STRUCTURED OUTPUT LOSS

Beam Search Layer
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EXPERIMENTS




DATASETS

All models trained purely on synthetic data
[Jaderberg, NIPS DLW 2014]

Font rendering : Border/shadow & color Composition ~ Projective distortion ~~ Natural image blending
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Realistic enough to transfer to test on real-world images



DATASETS

Synth90k

Lexicon of 90k words.

9 million iImages, training + test splits

Download from http:/www.robots.ox.ac.uk/~vgg/data/text/



http://www.robots.ox.ac.uk/~vgg/data/text/
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TRAINING

Pre-train CHAR and NGRAM model independently.

Use them to initialize joint model and continue jointly
training.



EXPERIMENTS - JOINT IMPROVEMENT

Train Data

Synth90k

TestData CHAR JOINT
Synth90k 87.3 | 91.0
IC03 859 | 89.6
SVT 68.0 | 71.7
IC13 795 | 81.8
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CHAR: grahaws
J OINT grahams
grahams

CHAR: mediaal
JOINT: medical
GT: medical

CHAR: chocoma
JOINT: chocomel
GT: chocomel

CHAR: ijustralia
JOINT: australia
GT: australia

joint model
outperforms character
segquence model
alone



JOINT MODEL CORRECTIONS

edge down-weighted in graph
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EXPERIMENTS - ZERO-SHOT RECOGNITION

large difference for
CHAR model when
not trained on test
words

Synth90k 87.3 | 91.0

Synth72k-90k | 87.3 -

Synth45k-90k | 87.3 -
Qyn+hon|(

IC03 859 | 89.6

SVT 68.0 | 71.7

IC13 79.5 81.8 joint model recovers
Synth1-72k |Synth72k-90k| 82.4 | 89.7 7 performance
Synth1-45k |Synth45k-90k| 80.3 | 89.1




EXPERIMENTS - COMPARISON

No Lexicon

SVT IC13
Model Type

Unconstrained | Baseline (ABBYY) - - .
Wang, ICCV ‘11 - - i,

Bissacco, ICCV ‘13 - 78.0 87.6
Language Yao, CVPR ‘14 - - -
Constrained | Jaderberg, ECCV ‘14 - - -
Gordo, arXiv ‘14 - - -
Jaderberg, NIPSDLW ‘14| 98.6 | 80.7 90.8
CHAR 85.9 | 68.0 79.5
JOINT 89.6 | 71.7 81.8

Unconstrained




EXPERIMENTS - COMPARISON

Fixed Lexicon
TS5k HITS5k-

No Lexicon

1ICO3-

ICO3 SVT IC13 SVT-50

Model Type

Full

-50

1k

Unconstrained | Baseline (ABBYY) - - - 55.0 35.0 24.3 -
Wang, ICCV ‘11 - - - 62.0 | 57.0 - -
Bissacco, ICCV ‘13 - 78.0 87.6 - 90.4 - -
Language | Y20, CVPR ‘14 - - - 80.3 | 759 | 80.2 | 69.3
Constrained | Jaderberg, ECCV ‘14 - - - 91.5 | 86.1 - -
Gordo, arXiv ‘14 - - - - 90.7 93.3 | 86.6
Jaderberg, NIPSDLW ‘14| 98.6 | 80.7 | 90.8 | 98.6 | 954 | 97.1 | 92.7
CHAR 859 | 68.0 | 79.5 | 96.7 | 93.5 | 95.0 | 89.3
Unconstrained 5 (T 89.6 | 71.7 | 81.8 | 97.0 | 932 | 955 | 89.6




SUMMARY

e [TwO models for text

e Joint formulation
» Structured output

recognition

0SS

» Use back-propagation for joint optimization

 EXperiments

» Joint model improves accuracy on language-based

data.

» Degrades elegantly when not from language (N-

gram model does
» Set benchmark fo
competes with pu

N't contribute much)
" unconstrained accuracy,

rely constrained models.
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