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Introduction 



Convolution 



Convolutional Neural Networks 

Figure from Sermanet et. al., ICPR-12 

•  Convolutional layers computationally expensive 

•  Main reason for justifying GPUs 



Fourier Transform 

Public Domain animation from Wikipedia 



Convolution using Fourier Transform 

•  Convolution Theorem 

▪  In Fourier basis, pointwise multiplications 

•  FFT with Cooley-Tuckey: O(n^2) -> O (n . log n) 



Contributions 



Contributions 
•  Convolutions as composition of FFT, transpose and GEMM  

▪  Implementation based on NVIDIA libraries + Auto-Tuner 

•  High Performance FBFFT and FBMM for our domain 

•  Bandwidth-bound (at least on GPUs) 

▪  Unlike convolutions in spatial domain 

▪  We increase the memory BW requirements 

▪  Tiling moves communication from main memory to caches 

•  Moved the ceiling of achievable performance 

▪  Now focus on optimization 



Convolutions as composition of operations 
 



Fast convolutions using cuFFT + cuBLAS 

•  Choosing between  

▪  Batched vs iterated cuBLAS calls 

▪  Best FFT interpolation sizes (cuFFT only) vs FBFFT 

▪  Efficiency vs additional multiplications  

▪  FBMM vs cuBLAS transpose + cublas GEMM 

▪  Efficiency vs additional memory consumption 

•  Auto-tuning 

▪  Construct small search space, traverse exhaustively 

▪  Enough for our purposes 



The need for specialized FFT implementation 
•  cuFFT not suited for ConvNet regimes 

▪  Tuned for HPC and DSP applications, large FFTs 

▪  Convolutional nets need many small FFTs 

•  cuFFT needs explicit zero-padding 

•  cuFFT / cuBLAS are closed-source 

▪  Cannot try new ideas or even implicit zero-padding 

•  Extra time / memory wasted on data layout transpose 



FBFFT 
•  Implementation views a GPU as a wide vector 

▪  Exchanges data using shuffles 

▪  Avoids shared memory 

▪  Heavy use of registers 

•  Compute twiddle factors using  trigonometric symmetries 

•  Actually limited by numbers of shuffle operations 

▪  Not by memory BW 

▪  Not by compute 



Memory Consumption 
•  Tradeoff: parallelism / efficiency / reuse and memory bloat 

▪  We can make them arbitrary small 

▪  Given a memory budget, get the best performance, across layers 

•  Single layer problem: all buffers must fit in memory 

▪  Reuse buffers across all layers, no reuse of FT values 

▪  ~9x the largest layer with cuBLAS / cuFFT, 3x with FBFFT / FBMM 

▪  Large inputs problematic (common Fourier interpolation basis) -> tiling 

•  Multi-layer problem 

▪  Exploit reuse between FT, dependences are long (2 long, 1 short)  



Key insights 
•  For kernels <= 15 x 15, you only need 16x16 or 32x32 FFTs 

•  Whatever the kernel size, cost is the same 

▪  True until you need a larger Fourier interpolation basis 

▪  Then tiling kicks in 

•  Algorithm >> Optimization 

•  Main memory BW limited 

▪  Work towards cache BW limited 

▪  Significant room for improvement (float16) 



Numbers  
(as of December 2014) 



Speedup (CuFFT + CuBLAS) over CuDNN (R1) 



Speedup (CuFFT + CuBLAS) 



Speedup (CuFFT + CuBLAS) 



Speedup (FBFFT vs CuFFT) 



Comparison on Imagenet Networks 



Comparison on Imagenet Networks 



Comparison on Imagenet Networks 



Hot From The Press 
•  Updated numbers: 

▪  Tiled FFT  

▪  Implicit padding  

▪  Buffer reuse and memory management strategies 

▪  Asynchrony for better utilization 

▪  Faster FFT (precomputed coefficients) 

•  Discuss at our poster session on Saturday  

▪  Saturday May 9th, 10:30am – 1:30pm   



Questions? 


