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- Assumptions: continuous with full support.
- Problems: restricted capacity distributes mass.
Modeling low dimensional distributions is impossible.
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- When Py(z) > 0, P.(x) — 0 integrand goes to 0: low
cost for fake looking samples.



Generative Adversarial Networks (Goodfellow et al.)

- Let [Py be the dist of g¢(Z)for some simple (e.g.
Gaussian) r.v Z, passed through a complex function.



Generative Adversarial Networks (Goodfellow et al.)

- Let [Py be the dist of go(Z) for some simple (e.g.
Gaussian) r.v Z, passed through a complex function.

- Discriminator maximizes and generator minimizes

L(D,0) = Egnp, [log D(z)] + Eznp, [log (1 — D(ge(2)))]



Generative Adversarial Networks (Goodfellow et al.)

- Let [Py be the dist of g¢(Z)for some simple (e.g.
Gaussian) r.v Z, passed through a complex function.

- Discriminator maximizes and generator minimizes
L(D,0) = Egp, [log D(z)] + E.np, [log (1 — D(gs(2)))]

1
JSD(P,.||Pg) = max §L(D,9) + log 2



JSD seems maxed out..
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Generative Adversarial Networks

- Under optimal discriminator, minimizes

min JSD(Pr|[Ps) = KL(Pr|Pm) + K L(Po[Prm)
&

- Problems: vanishing gradients very quickly when D’s
accuracy is high.



Discriminator is pretty good...

Discriminator's accuracy
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Vanishing gradients, original cost

Gradient of the generator with the original cost
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Alternate update
- Alternate update that has less vanishing gradients
Af o< Ezrp,[Vo log(Dy(ge(2)))]
- Under optimality optimizes

K L(Pg||Py) — 2JSD(Py||Py)

- Problems: JSD with the wrong sign, reverse KL has
high mode dropping. Still unstable when D is good.




High variance updates

Gradient of the generator with the — log D cost
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Problems of GANs (and divergences)
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- When IP’,F and IP’Q lie on low dimensional manifolds,
there’s always a perfect discriminator, that provides
no usable gradients.

Theorem 2.2. Let P, and P, be two distributions that have support contained in two closed mani-
folds M and P that don’t perfectly align and don’t have full dimension. We further assume that P,
and P, are continuous in their respective manifolds, meaning that if there is a set A with measure
0 in M, then P.(A) = 0 (and analogously for Pg). Then, there exists an optimal discriminator

D* : X — [0, 1] that has accuracy 1 and for almost any x in M or P, D* is smooth in a neigh-
bourhood of x and V ,D*(x) = 0.
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Problems of GANs (and divergences)

- When [P,. and [Pglie on low dimensional manifolds,
there’s always a perfect discriminator, that provides
no usable gradients.

- Under the same assumptions

JSD(P,||Pg) = log 2
KL(P,||Pg) = +oc
KL(Pg||P,) = +00
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A first step to a solution

- Distributions are essentially disjoint

- Add noise during training to make them overlap!

- Matching noisy distributions amounts to matching the
underlying ones.
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A first step to a solution

Theorem 3.2. Let P, and P, be two distributions with support on M and ‘P respectively, with
€ ~ N(0,0%1). Then, the gradient passed to the generator has the form

Ezrvp(z) [Vg log(1 —DF (99(3)))] (4)

= E.np(z) {“(z) / | Feloo(2) —9)Vollga(2) - yl|* dPr(y)

—b(2) fp P.(96(2) — 1) Vsllge(2) — ylI? AP, ()

We move our samples gg(z) towards point in the data
manifold, weighted by their probability and distance to
our samples.
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Theorem 3.3. Let P, and P, be any two distributions, and € be a random vector with mean 0 and
variance V. If P, . and Py . have support contained on a ball of diameter C, then 5
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- Wasserstein is well defined in the manifold setting.

- The noise method optimizes an upper bound of it.

- We can reduce the first summand by annealing the
noise, the second one by optimizing with noise.
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Loads of work done since then!

Now we have more understanding of the relationship
between Wasserstein, JSD and the rest: Weak vs
strong.

Optimizing an approximation of Wasserstein directly
is doable. (Arjovsky, Chintala & Bottou, 2017)
Different ways to do this. (Gulrajani et al. 2017)
Time to scale up!






