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- Maximum likelihood:

- Assumptions: continuous with full support.
- Problems: restricted capacity distributes mass. 

Modeling low dimensional distributions is impossible.



Kullback-Leibler Divergence

- Closeness measured by KL divergence (equivalent to 
ML):



Kullback-Leibler Divergence

- Closeness measured by KL divergence (equivalent to 
ML):

- When   integrand goes to 
infinity: high cost for mode dropping. 



Kullback-Leibler Divergence

- Closeness measured by KL divergence (equivalent to 
ML):

- When   integrand goes to 
infinity: high cost for mode dropping.

- When   integrand goes to 0: low 
cost for fake looking samples.  
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JSD seems maxed out..



Generative Adversarial Networks

- Under optimal discriminator, minimizes

- Problems: vanishing gradients very quickly when D’s 
accuracy is high. 



Discriminator is pretty good...



Vanishing gradients, original cost
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Alternate update

- Alternate update that has less vanishing gradients

- Under optimality optimizes

- Problems: JSD with the wrong sign, reverse KL has 
high mode dropping. Still unstable when D is good.



High variance updates
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Problems of GANs (and divergences)

- When       and      lie on low dimensional manifolds, 
there’s always a perfect discriminator, that provides 
no usable gradients.

- Under the same assumptions
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A first step to a solution

- Distributions are essentially disjoint
- Add noise during training to make them overlap!
- Matching noisy distributions amounts to matching the 

underlying ones.
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Manifold picture with noise
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A first step to a solution

We move our samples           towards point in the data 
manifold, weighted by their probability and distance to 
our samples. 
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Theoretical guarantee

- Wasserstein is well defined in the manifold setting.
- The noise method optimizes an upper bound of it.
- We can reduce the first summand by annealing the 

noise, the second one by optimizing with noise.
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Loads of work done since then!

- Now we have more understanding of the relationship 
between Wasserstein, JSD and the rest: Weak vs 
strong.

- Optimizing an approximation of Wasserstein directly 
is doable. (Arjovsky, Chintala & Bottou, 2017)

- Different ways to do this. (Gulrajani et al. 2017)
- Time to scale up!




