Towards Principled Methods for Training

Generative Adversarial Networks

Martin Arjovsky & Léon Bottou

Unsupervised learning

- We have samples $\{x^{(i)}\}_{i=1}^m$ from an unknown distribution \mathbb{P}_r

Unsupervised learning

- We have samples $\{x^{(i)}\}_{i=1}^m$ from an unknown distribution \mathbb{P}_r

- We want to approximate it by \mathbb{P}_{θ} a parametric distribution that's close to \mathbb{P}_r in some sense.

Unsupervised learning

- We have samples $\{x^{(i)}\}_{i=1}^m$ from an unknown distribution \mathbb{P}_r

- We want to approximate it by \mathbb{P}_{θ} a parametric distribution that's close to \mathbb{P}_r in some sense.
- Close how?

Maximum Likelihood

Maximum likelihood:

$$\max_{\theta \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \log P_{\theta}(x^{(i)})$$

Maximum Likelihood

Maximum likelihood:

$$\max_{\theta \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \log P_{\theta}(x^{(i)})$$

- Assumptions: continuous with full support.

Maximum Likelihood

Maximum likelihood:

$$\max_{\theta \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \log P_{\theta}(x^{(i)})$$

- Assumptions: continuous with full support.
- Problems: restricted capacity distributes mass.
 Modeling low dimensional distributions is impossible.

Kullback-Leibler Divergence

 Closeness measured by KL divergence (equivalent to ML):

$$\min_{\theta \in \mathbb{R}^d} KL(\mathbb{P}_r || \mathbb{P}_\theta) = \int_{\mathcal{X}} P_r(x) \log \frac{P_r(x)}{P_\theta(x)} dx$$

Kullback-Leibler Divergence

 Closeness measured by KL divergence (equivalent to ML):

$$\min_{\theta \in \mathbb{R}^d} KL(\mathbb{P}_r || \mathbb{P}_\theta) = \int_{\mathcal{X}} P_r(x) \log \frac{P_r(x)}{P_\theta(x)} dx$$

- When $P_r(x) > 0$, $P_{\theta}(x) \to 0$ integrand goes to infinity: high cost for mode dropping.

Kullback-Leibler Divergence

 Closeness measured by KL divergence (equivalent to ML):

$$\min_{\theta \in \mathbb{R}^d} KL(\mathbb{P}_r || \mathbb{P}_\theta) = \int_{\mathcal{X}} P_r(x) \log \frac{P_r(x)}{P_\theta(x)} dx$$

- When $P_r(x) > 0$, $P_{\theta}(x) \to 0$ integrand goes to infinity: high cost for mode dropping.
- When $P_{\theta}(x) > 0, P_{r}(x) \rightarrow 0$ integrand goes to 0: low cost for fake looking samples.

Generative Adversarial Networks (Goodfellow et al.)

- Let \mathbb{P}_{θ} be the dist of $g_{\theta}(Z)$ for some simple (e.g. Gaussian) r.v Z, passed through a complex function.

Generative Adversarial Networks (Goodfellow et al.)

- Let \mathbb{P}_{θ} be the dist of $g_{\theta}(Z)$ for some simple (e.g. Gaussian) r.v Z, passed through a complex function.

- Discriminator maximizes and generator minimizes

$$L(D, \theta) = \mathbb{E}_{x \sim \mathbb{P}_r} [\log D(x)] + \mathbb{E}_{z \sim p_Z} [\log (1 - D(g_{\theta}(z)))]$$

Generative Adversarial Networks (Goodfellow et al.)

- Let \mathbb{P}_{θ} be the dist of $g_{\theta}(Z)$ for some simple (e.g. Gaussian) r.v Z, passed through a complex function.

- Discriminator maximizes and generator minimizes

$$L(D, \theta) = \mathbb{E}_{x \sim \mathbb{P}_r} [\log D(x)] + \mathbb{E}_{z \sim p_Z} [\log (1 - D(g_{\theta}(z)))]$$
$$JSD(\mathbb{P}_r || \mathbb{P}_{\theta}) = \max_{D} \frac{1}{2} L(D, \theta) + \log 2$$

JSD seems maxed out...

Generative Adversarial Networks

- Under optimal discriminator, minimizes

$$\min_{\theta \in \mathbb{R}^d} JSD(\mathbb{P}_r || \mathbb{P}_{\theta}) = KL(\mathbb{P}_r || \mathbb{P}_m) + KL(\mathbb{P}_{\theta} || \mathbb{P}_m)$$

- Problems: vanishing gradients very quickly when D's accuracy is high.

Discriminator is pretty good...

Vanishing gradients, original cost

Alternate update

- Alternate update that has less vanishing gradients

$$\Delta\theta \propto \mathbb{E}_{z \sim p_Z} [\nabla_\theta \log(D_\phi(g_\theta(z)))]$$

Alternate update

- Alternate update that has less vanishing gradients

$$\Delta\theta \propto \mathbb{E}_{z \sim p_Z} [\nabla_\theta \log(D_\phi(g_\theta(z)))]$$

Under optimality optimizes

$$KL(\mathbb{P}_{\theta}||\mathbb{P}_r) - 2JSD(\mathbb{P}_r||\mathbb{P}_{\theta})$$

Alternate update

- Alternate update that has less vanishing gradients

$$\Delta\theta \propto \mathbb{E}_{z \sim p_Z} [\nabla_\theta \log(D_\phi(g_\theta(z)))]$$

- Under optimality optimizes

$$KL(\mathbb{P}_{\theta}||\mathbb{P}_r) - 2JSD(\mathbb{P}_r||\mathbb{P}_{\theta})$$

- Problems: JSD with the wrong sign, reverse KL has high mode dropping. Still unstable when D is good.

High variance updates

- When \mathbb{P}_r and \mathbb{P}_θ lie on low dimensional manifolds, there's always a perfect discriminator, that provides no usable gradients.

Manifold picture

- When \mathbb{P}_r and \mathbb{P}_θ lie on low dimensional manifolds, there's always a perfect discriminator, that provides no usable gradients.

Theorem 2.2. Let \mathbb{P}_r and \mathbb{P}_g be two distributions that have support contained in two closed manifolds \mathcal{M} and \mathcal{P} that don't perfectly align and don't have full dimension. We further assume that \mathbb{P}_r and \mathbb{P}_g are continuous in their respective manifolds, meaning that if there is a set A with measure 0 in \mathcal{M} , then $\mathbb{P}_r(A) = 0$ (and analogously for \mathbb{P}_g). Then, there exists an optimal discriminator $D^*: \mathcal{X} \to [0,1]$ that has accuracy 1 and for almost any x in \mathcal{M} or \mathcal{P} , D^* is smooth in a neighbourhood of x and $\nabla_x D^*(x) = 0$.

- When \mathbb{P}_r and \mathbb{P}_θ lie on low dimensional manifolds, there's always a perfect discriminator, that provides no usable gradients.

- When \mathbb{P}_r and \mathbb{P}_θ lie on low dimensional manifolds, there's always a perfect discriminator, that provides no usable gradients.
- Under the same assumptions

$$JSD(\mathbb{P}_r||\mathbb{P}_{\theta}) = \log 2$$
$$KL(\mathbb{P}_r||\mathbb{P}_{\theta}) = +\infty$$
$$KL(\mathbb{P}_{\theta}||\mathbb{P}_r) = +\infty$$

- Distributions are essentially disjoint

- Distributions are essentially disjoint
- Add noise during training to make them overlap!

- Distributions are essentially disjoint
- Add noise during training to make them overlap!
- Matching noisy distributions amounts to matching the underlying ones.

Manifold picture

Manifold picture with noise

Theorem 3.2. Let \mathbb{P}_r and \mathbb{P}_g be two distributions with support on \mathcal{M} and \mathcal{P} respectively, with $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$. Then, the gradient passed to the generator has the form

$$\mathbb{E}_{z \sim p(z)} \left[\nabla_{\theta} \log(1 - D^*(g_{\theta}(z))) \right]$$

$$= \mathbb{E}_{z \sim p(z)} \left[a(z) \int_{\mathcal{M}} P_{\epsilon}(g_{\theta}(z) - y) \nabla_{\theta} \|g_{\theta}(z) - y\|^2 d\mathbb{P}_r(y) \right]$$

$$- b(z) \int_{\mathcal{P}} P_{\epsilon}(g_{\theta}(z) - y) \nabla_{\theta} \|g_{\theta}(z) - y\|^2 d\mathbb{P}_g(y) \right]$$

$$(4)$$

We move our samples $g_{\theta}(z)$ towards point in the data manifold, weighted by their probability and distance to our samples.

Theorem 3.3. Let \mathbb{P}_r and \mathbb{P}_g be any two distributions, and ϵ be a random vector with mean 0 and variance V. If $\mathbb{P}_{r+\epsilon}$ and $\mathbb{P}_{g+\epsilon}$ have support contained on a ball of diameter C, then ⁶

$$W(\mathbb{P}_r, \mathbb{P}_g) \le 2V^{\frac{1}{2}} + 2C\sqrt{JSD(\mathbb{P}_{r+\epsilon}||\mathbb{P}_{g+\epsilon})}$$
(6)

Theorem 3.3. Let \mathbb{P}_r and \mathbb{P}_g be any two distributions, and ϵ be a random vector with mean 0 and variance V. If $\mathbb{P}_{r+\epsilon}$ and $\mathbb{P}_{g+\epsilon}$ have support contained on a ball of diameter C, then ⁶

$$W(\mathbb{P}_r, \mathbb{P}_g) \le 2V^{\frac{1}{2}} + 2C\sqrt{JSD(\mathbb{P}_{r+\epsilon}||\mathbb{P}_{g+\epsilon})}$$
(6)

Wasserstein is well defined in the manifold setting.

Theorem 3.3. Let \mathbb{P}_r and \mathbb{P}_g be any two distributions, and ϵ be a random vector with mean 0 and variance V. If $\mathbb{P}_{r+\epsilon}$ and $\mathbb{P}_{g+\epsilon}$ have support contained on a ball of diameter C, then ⁶

$$W(\mathbb{P}_r, \mathbb{P}_g) \le 2V^{\frac{1}{2}} + 2C\sqrt{JSD(\mathbb{P}_{r+\epsilon}||\mathbb{P}_{g+\epsilon})}$$
(6)

- Wasserstein is well defined in the manifold setting.
- The noise method optimizes an upper bound of it.

Theorem 3.3. Let \mathbb{P}_r and \mathbb{P}_g be any two distributions, and ϵ be a random vector with mean 0 and variance V. If $\mathbb{P}_{r+\epsilon}$ and $\mathbb{P}_{g+\epsilon}$ have support contained on a ball of diameter C, then ⁶

$$W(\mathbb{P}_r, \mathbb{P}_g) \le 2V^{\frac{1}{2}} + 2C\sqrt{JSD(\mathbb{P}_{r+\epsilon}||\mathbb{P}_{g+\epsilon})}$$
(6)

- Wasserstein is well defined in the manifold setting.
- The noise method optimizes an upper bound of it.
- We can reduce the first summand by annealing the noise, the second one by optimizing with noise.

- Now we have more understanding of the relationship between Wasserstein, JSD and the rest: Weak vs strong.

- Now we have more understanding of the relationship between Wasserstein, JSD and the rest: Weak vs strong.
- Optimizing an approximation of Wasserstein directly is doable. (Arjovsky, Chintala & Bottou, 2017)

- Now we have more understanding of the relationship between Wasserstein, JSD and the rest: Weak vs strong.
- Optimizing an approximation of Wasserstein directly is doable. (Arjovsky, Chintala & Bottou, 2017)
- Different ways to do this. (Gulrajani et al. 2017)

- Now we have more understanding of the relationship between Wasserstein, JSD and the rest: Weak vs strong.
- Optimizing an approximation of Wasserstein directly is doable. (Arjovsky, Chintala & Bottou, 2017)
- Different ways to do this. (Gulrajani et al. 2017)
- Time to scale up!

