
New Directions For
Recurrent Neural Networks

Alex Graves

RNNs — especially LSTM / GRU variants — are now ubiquitous in ML research and
routinely used for large-scale commercial tasks, including speech and handwriting
recognition, machine translation, text-to-speech and many others.

Increasingly trained end-to-end: feed the input sequence in, get the desired output
sequence out

RNNs Work!

RNNs — especially LSTM / GRU variants — are now ubiquitous in ML research and
routinely used for large-scale commercial tasks, including speech and handwriting
recognition, machine translation, text-to-speech and many others.

Increasingly trained end-to-end: feed the input sequence in, get the desired output
sequence out

So what can’t they do, and what can we do about it?

RNNs Work!

Extension 1: External Memory
Problem: RNN memory is stored in the vector of hidden activations

- Activation memory is ‘fragile’: tends to be overwritten by new information
- No. of weights and hence computational cost grows with memory size (can’t

put a whole book in memory)
- ‘Hard-coded’ memory locations make indirection (and hence variables) hard

Solution: Give the net access to external memory
- Less fragile: only some memory is ‘touched’ at each step
- Indirection is possible because memory content is independent of location
- Separates computation from memory

Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et. al. (2014)
Memory Networks, Weston et. al. (2014)
Neural Turing Machines, Graves, Wayne, Danihelka (2014)

http://arxiv.org/find/cs/1/au:+Bahdanau_D/0/1/0/all/0/1

Hybrid computing using a neural network with dynamic external memory,
Graves, Wayne et. al., Nature, 2016

Differentiable Neural Computers

Basic Read/Write Architecture

The Controller is a neural network
(recurrent or feedforward)

The Heads select portions of the
memory and read or write to them

The Memory is a real-valued matrix

Memory Access
Most networks with external memory (RNNs with attention, Memory Nets, NTM,
DNC…) use some form of content-based memory access: find the memory closest
(e.g. cosine similarity) to some key vector emitted by the network, return either the
memory contents or an associated value vector

A universal access mechanism (c.f. associative computers)

But maybe not the most convenient for all tasks: e.g. we search real computers
using text strings, directory trees, read/write time, user-defined titles or tags…
many more mechanisms to be tried

Dynamic Memory Allocation

● NTM could only ‘allocate’ memory in contiguous blocks, leading to memory
management problems

● DNC defines a differentiable free list tracking the usage of each memory
location

● Usage is automatically increased after each write and optionally decreased
after each read

● The network can then choose to write to the most free location in memory,
rather than searching by content

Memory Allocation Test

Memory Resizing Test

Searching By Time

● We wanted DNC to be able to iterate through memories in chronological order

● To do this it maintains a temporal link matrix Lt whose i,j th element is
interpreted as the probability that memory location i was written to immediately
before location j

● When reading from memory, DNC can choose to follow these links instead of
searching by content.

● Unlike location-based access this facilitates two cognitively important functions:

○ Sequence chunking (don’t write at every step)

○ Recoding (iteratively reprocess a sequence, chunking each time)

London Underground with DNC

bAbI Results

Ask me anything: dynamic memory networks for natural language processing, Kumar et. al. (2015)
 End-to-end memory networks, Sukhbaatar et. al. (2015)

Sparse Memory Access

Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes, Rae, Hunt et. al. (2016)

Using a KNN

By restricting reads
and writes to 8 (say)
locations per step.

Sparse DNC Efficiency

Extension 2: Learning When to Halt

Problem: The number of steps of computation an RNN gets before emitting an
output is determined by the length of the input sequence, not the difficulty of the
task.

- Do1 any2 three3 positive4 integers5 a,b,c6 satisfy7 a
n+bn=cn

8
 for9 any10

integer11 n12 greater13 than14 two?15

Solution: Train the network to learn how long to ‘think’ before it ‘acts’

- separate computation time from data time

RNN Computation Graph

S1 S2 S3

x1

y1

x2 x3

y2 y3

 s1

Adaptive computation Time (ACT)

0.1 0.3 0.8

x1

y1

 s2
0.4 0.6

y2

x2

A time penalty acts to reduce the total number of ‘ponder’ steps

Weighted sum

Halting Probability

Adaptive Computation Time With Recurrent Neural Networks, Graves (2016)

Addition with ACT

Addition
Results

General Artificial Intelligence

Dataset: WMT14 test set, English to French

(SMT): 37.0 BLEU

Baseline AttLSTM: 3.4 PPL, 37.5 BLEU

AttLSTM + ACT: 3.1 PPL, 38.3 BLEU

Vinyals, Jozefowicz - unpublished (yet)

Machine Translation

Pondering Wikipedia (character level)

ACT for Feedforward Nets

Spatially Adaptive Computation Time for Residual Networks, Figurnov et. al, 2016

ImageNet high ponder cost examples

Extension 3: Beyond BPTT
Problem: Most RNNs are trained with Backpropagation Through Time (BPTT)

- Memory cost increases with sequence length
- Weight update frequency decreases
- The better RNNs get, the longer the sequences we train them on

Solutions:

1. Truncated backprop (misses long range interactions)
2. RTRL (too expensive)
3. Approximate/local RTRL (promising)
4. Synthetic Gradients (drastic)

Training recurrent net-works online without backtracking. Ollivier et. al. (2015)
Long Short-Term Memory. Hochreiter and Schmidhuber (1997)

General Artificial Intelligence

Consider a regular feed-forward network

DECOUPLED NEURAL INTERFACES

We can create a model of
error gradients using local
information

The result is Layer 1 can
now update before the
execution of Layer 2.

Decoupled Neural Interfaces using Synthetic Gradients.
Jaderberg et. al. (2016)

General Artificial Intelligence

The synthetic gradient model is trained to
predict target gradients.

The target gradients could themselves be
bootstrapped from other downstream synthetic
gradient models.

DECOUPLED NEURAL INTERFACES

synthetic gradients

L2 regression loss

Analogous to return prediction bootstrapping
in RL: ‘Learn a guess from a guess’

General Artificial Intelligence

Truncated BPTT

General Artificial Intelligence

RNN learns to predict the gradients returned by its future self

BPTT with Synthetic Gradients

General Artificial Intelligence

RECURRENT MODELS

DNI extends the time over which a truncated BPTT model can learn.

 + Convergence speed + Data efficiency

General Artificial Intelligence

MULTI NETWORK

Two RNNs. Tick at different clock speeds. Must communicate to solve task.

Overall Architecture

