b DeepMind

New Directions For
Recurrent Neural Networks

Alex Graves



RNNs Work!

RNNs — especially LSTM / GRU variants — are now ubiquitous in ML research and
routinely used for large-scale commercial tasks, including speech and handwriting
recognition, machine translation, text-to-speech and many others.

Increasingly trained end-to-end: feed the input sequence in, get the desired output
sequence out



RNNs Work!

RNNs — especially LSTM / GRU variants — are now ubiquitous in ML research and
routinely used for large-scale commercial tasks, including speech and handwriting
recognition, machine translation, text-to-speech and many others.

Increasingly trained end-to-end: feed the input sequence in, get the desired output
sequence out

So what can’t they do, and what can we do about it?



Extension 1: External Memory

Problem: RNN memory is stored in the vector of hidden activations
- Activation memory is ‘fragile’: tends to be overwritten by new information
- No. of weights and hence computational cost grows with memory size (can’t
put a whole book in memory)
- ‘'Hard-coded’ memory locations make indirection (and hence variables) hard

Solution: Give the net access to external memory
- Less fragile: only some memory is ‘touched’ at each step
- Indirection is possible because memory content is independent of location

- Separates computation from memory

Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et. al. (2014)
Memory Networks, Weston et. al. (2014)
Neural Turing Machines, Graves, Wayne, Danihelka (2014)


http://arxiv.org/find/cs/1/au:+Bahdanau_D/0/1/0/all/0/1

< “""l :, _
Hybrid computmg usmg a neural network with dynamlc external memory,

Graves Wayne et. al., Nature, 2016
e N S | ‘ \




Basic Read/Write Architecture

External Input External Output

The Controller is a neural network \ /

(recurrent or feedforward) Controller
The Heads select portic.ms of the Raad Heads Write Heads
memory and read or write to them

| 1

The Memory is a real-valued matrix Memory




Memory Access

Most networks with external memory (RNNs with attention, Memory Nets, NTM,
DNC...) use some form of content-based memory access: find the memory closest
(e.g. cosine similarity) to some key vector emitted by the network, return either the
memory contents or an associated value vector

A universal access mechanism (c.f. associative computers)

But maybe not the most convenient for all tasks: e.g. we search real computers
using text strings, directory trees, read/write time, user-defined titles or tags...
many more mechanisms to be tried



Dynamic Memory Allocation

e NTM could only ‘allocate’ memory in contiguous blocks, leading to memory
management problems

e DNC defines a differentiable free list tracking the usage of each memory
location

e Usage is automatically increased after each write and optionally decreased
after each read

e The network can then choose to write to the most free location in memory,
rather than searching by content



Memory Allocation Tes

; i 1

. 7 N [
. ] |
- C [ )

Memory Location
5
[ |
|

~ [ Write Head l l l
® . Read Head . . l

=

3

o©
v

Alloc. gate



Memory Resizing Test

Memory Locations

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

20 40 60 80 100120140160 180200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Graph Triples

0.0

1091407 uodeld



Searching By Time

e We wanted DNC to be able to iterate through memories in chronological order

e Todo this it maintains a temporal link matrix L, whose i, h element is

interpreted as the probability that memory location i was written to immediately
before location j

e \When reading from memory, DNC can choose to follow these links instead of
searching by content.

e Unlike location-based access this facilitates two cognitively important functions:
o Sequence chunking (don’t write at every step)

o Recoding (iteratively reprocess a sequence, chunking each time)



Decoded Memory Locations

London Underground with DNC

a. Read and Write Weightings ¢. London Underground Map

Graph definition Query Answer

Oxford Circus>Tottenham Court Rd il [ | ]
Tottenham Court Rd>Oxford Circus [l
Green Park>Oxford Circus [ | [ |
Victoria>Green Park [ | | |
Oxford Circus>Green Park |
Green Park>Victoria [ ]
Green Park>Piccadilly Circus [
Piccadilly Circus>Leicester Sq | |
Piccadilly Circus>Green Park [ |
Leicester Sq>Piccadilly Circus [ ] |
Piccadilly Circus>Oxford Circus [ | [ |
Charing Cross>Piccadilly Circus [ |
Piccadilly Circus>Charing Cross |
Oxford Circus>Piccadilly Circus | |
Leicester Sq>Tottenham Court Rd [ ]
Charing Cross>Leicester Sq [ |
Leicester Sqg>Charing Cross [ |
Tottenham Court Rd>Leicester Sq [ | [ |
Victoria>__ Victoria N | |

= G B - N d. Read Key e. Location Content
__>__NorthS [ | |

__ >  Piccadilly W l. l@

= B%fn”t?gl ’E | | | b Decode 3 ¥ Decode 4

. b. Read Mode

Backward
Key Content INNNEEEE
B Wit Head Forward HENNNEENEEEEEEEEEEE - INEEE

B Read Head 1 Backward

0
B Read Head 2 Content l [ 11 ]]]
Forward HEENENEEEEEEEEEEEN ui

0 5 10 15 20 25 30
Time

_n
pu
o
=
—
al
o
3
=
o
=
o)

To Line
I

i

Victoria
Bakerloo N =—
Bakerloo S

North S
Piccadilly E

Piccadilly W
Victoria

Green Park
Leicester Sq
Victoria
Charing Cross
Central E
Central W
North N
Victoria N
Victoria § -4—
Charing Cross
Bakerloo N
Bakerloo S
Central E
Central W
Victoria N
Victoria S

Oxford Circus [l

Piccadilly Circus

Tottenham Court Rd
Green Park

Leicester Sq
Oxford Circus
Piccadilly Circus

Green Park
Tottenham Court Rd

Leicester Sq
Oxford Circus
Piccadilly Circus

Green Park
Tottenham Court Rd

Leicester Sq
Oxford Circus
Piccadilly Circus

Tottenham Court Rd

Charing Cross
Charing Cross



bAbl Results

bAbI Best Results

Task LSTM NTM DNC1 DNC2 MemN2N MemN2N DMN

(Joint) (Joint) (Joint) (Joint) (Joint) 2" | (Single) 2" | (Single) 2°
1: 1 supporting fact 24.5 315 0.0 0.0 0.0 0.0 0.0
2: 2 supporting facts 532 545 1.3 04 1.0 0.3 1.8
3: 3 supporting facts 483 43.9 2.4 1.8 6.8 2.1 48
4: 2 argument rels. 0.4 0.0 0.0 0.0 0.0 0.0 0.0
5: 3 argument rels. 35 0.8 0.5 0.8 6.1 0.8 0.7
6: yes/no questions 115 17.1 0.0 0.0 0.1 0.1 0.0
7: counting 15.0 17.8 0.2 0.6 6.6 20 3.1
8: lists/sets 16.5 13.8 0.1 0.3 2 0.9 35
9: simple negation 10.5 16.4 0.0 0.2 0.0 0.3 0.0
10: indefinite knowl. 229 16.6 0.2 0.2 0.5 0.0 0.0
11: basic coreference 6.1 15.2 0.0 0.0 0.0 0.1 0.1
12: conjunction 3.8 8.9 0.1 0.0 0.1 0.0 0.0
13: compound coref. 0.5 7.4 0.0 0.1 0.0 0.0 0.2
14: time reasoning 55.3 24.2 0.3 0.4 0.0 0.1 0.0
15: basic deduction 44.7 47.0 0.0 0.0 0.2 0.0 0.0
16: basic induction 526 536 524 55.1 0.2 51.8 0.6
17: positional reas. 39.2 23.5 24.1 12.0 41.8 18.6 40.4
18: size reasoning 4.8 2.2 4.0 0.8 8.0 53 4.7
19: path finding 89.5 4.3 0.1 3.9 9.7 23 65.5
20: agent motiv. 1.3 1.5 0.0 0.0 0.0 0.0 0.0
Mean Err. (%) 25.2 20.1 43 3.8 75 42 6.4
Failed (err. > 5%) 15 16 2 2 6 3 2

Ask me anything: dynamic memory networks for natural language processing, Kumar et. al. (2015)

End-to-end memory networks, Sukhbaatar et. al. (2015)




Sparse Memory Access

Dense Sparse Using a KNN
Content-based addressing O(n)  O(logn)
Temporal addressing O(n?) 0O@1)
Read O(n)  O(1) " oy s
Erase O (ﬂ) O ( 1) locations per step.y
Add O(n) O(1)

Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes, Rae, Hunt et. al. (2016)



Sparse DNC Efficiency

10GiB
—— SDNC —— SDNC 5.5GiB
—— DNC 2.55s —— DNC
10° 1GiB
»
E
2 g
£ 10 £ 100MiB
[ (]
= =
o
= 23MiB
10! 10MiB
- — 442ms
10;01 102 102 104 1Mot 102 103
Number of memory slots (N)

Number of memory slots (N)



Extension 2: Learning When to Halt

Problem: The number of steps of computation an RNN gets before emitting an
output is determined by the length of the input sequence, not the difficulty of the

task.
) e : Nt 1
Do, any, three, positive , integers, a,b,c, satisfy, a"+b"=c" for, any
] 2
integer,, n,, greater , than,, two?_,

Solution: Train the network to learn how long to ‘think’ before it ‘acts’

- separate computation time from data time



RNN Computation Graph



Adaptive computation Time (ACT)

Weighted sum A 2
\ T
\
\
<
— - O—D—O - O—® |—
\
\
\
\
X, Halting Probability X,

A time penalty acts to reduce the total number of ‘ponder’ steps

Adaptive Computation Time With Recurrent Neural Networks, Graves (2016)



Addition with ACT

N O W

o0 W o —
* O W B —
* O 00 00 O O

O O &~ 0O
v

Input seq. Target seq.



00 om0 R SR S SR
5 Time Penalty
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009
- 0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
01
Without ACT

Addition
Results

Q
00

LEd L EE] |

..............................................................

o
o

Sequence Error Rate

—

' 0 100000 200000 300000 400000 500000
lterations

ARRRRN



— MO 0 N — 00 M
OO m N O~ O
< — 00 M~ <t =™~

o) (o]

M m

o

— OO0 MO <

O o0 MO or~OO0MmM

0O MNMNWO <O
00— 00w




Machine Translation

Dataset: WMT14 test set, English to French

(SMT): 37.0 BLEU
Baseline AttLSTM: 3.4 PPL, 37.5 BLEU
AtLSTM + ACT: 3.1 PPL, 38.3 BLEU

Vinyals, Jozefowicz - unpublished (yet)

b Google DeepMind



Pondering Wikipedia (character level)

secur

ity

<;d>15899658</id>

g

I\
\

Ponder

f;Aﬁ
::’\:
i

" 1

Wy
s
|

<revision=> <ia>1589965§</id>

United States security treaty</title>

<id>1157</id>




ACT for Feedforward Nets

15.3

18.6
18.0
17.4
16.8
16.2
15.6
15.0
14 .4

18.6
18.0
17.4
16.8
16.2
15.6
15.0
14.4

Spatially Adaptive Computation Time for Residual Networks, Figurnov et. al, 2016



ImageNet high ponder cost examples

18.6
18.0
17.4
16.8
16.2
15.6
15.0
14.4

18.6
18.0
17.4
16.8

15.6
15.0
14.4

18.6
18.0
17.4
16.8
16.2
15.6
15.0
14.4



Extension 3: Beyond BPTT

Problem: Most RNNs are trained with Backpropagation Through Time (BPTT)

- Memory cost increases with sequence length
- Weight update frequency decreases
- The better RNNs get, the longer the sequences we train them on

Solutions:

1. Truncated backprop (misses long range interactions)
2. RTRL (too expensive)

3. Approximate/local RTRL (promising)

4. Synthetic Gradients (drastic)

Training recurrent net-works online without backtracking. Ollivier et. al. (2015)
Long Short-Term Memory. Hochreiter and Schmidhuber (1997)



DECOUPLED NEURAL INTERFACES

Consider a regular feed-forward network

Input

T Jd2Ae]
¢ Jake]
€ JaAeT

Synthetic Gradient .
{ Predicted gradilent of th_e Iolss with The reSUIt |S Layer 1 Can
respect to the input activations
now update before the

We can create a model of
error gradients using local

information T

execution of Layer 2.

- LOSS

Input

T JdaAie]
7z Jdahien
¢ JaAen

Decoupled Neural Interfaces using Synthetic Gradients. i <>
Jaderberg et. al. (2016)
b Google DeepMind



DECOUPLED NEURAL INTERFACES /

10404 ll—

The synthetic gradient model is trained to ( ﬁg
predict target gradients. -

The target gradients could themselves be ha

bootstrapped from other downstream synthetic (
gradlent models. synthetic gradients
) ) )
& & &
Input—| © B foe»] 3 —>Loss  Analogous to return prediction bootstrapping
— N <> w in RL: ‘Learn a guess from a guess’
—/ —_/

b Google DeepMind



Truncated BPTT

'b Google DeepMind General Artificial Intelligence



BPTT with Synthetic Gradients

Synthetic Synthetic
gradient gradient

RNN learns to predict the gradients returned by its future self

6 GOOSIG DeepMind General Artificial Intelligence



RECURRENT MODELS

DNI extends the time over which a truncated BPTT model can learn.

Sequence Length Solved

+ Convergence speed + Data efficiency
Repeat Copy Penn Treebank
70 === T=2.0(1.39)
67 1.44 === T=3.0(1.377)
60 59 59 === T=4.0(1.37)
s DNI+Aux T=5 1.42 === T=5.0(1.366)
50 w BPTT T_=5 === T= 80 (1354)
....... ey " T=20.0 (1.349)
40 39 == DNI+Aux T=3 P === T=40.0(1.344)
s BPTT  T=3 Z
e DNI+Aux T=2
30— BP‘rJF T=2 1.38
23 - _
- s DNI+Aux T'= 2.0 (1.372)
E----.E --------------------------------------------------------- 1.36 — DN|+AUX T= 3-0 (1_36)
10 P “. _ == DNI+Aux T'= 4.0 (1.352)
A 5. 1.34 =— DNI+Aux T'= 5.0 (1.347)
0 —— DNI+Aux T'= 8.0 (1.334)

0 2 4 6 8 10 12 14 0 500000 1000000 1500000 2000000
Data Time (millions) Data Time



MULTI NETWORK

Two RNNSs. Tick at different clock speeds. Must communicate to solve task.

0.6 Network A
count(3s)=2 <£ 0.5 ' Bprop
ggg === NoO Bprop
LlJ .
+ 0.2 = DNI
2 0.1
0.0
0.8 Network B
@ 0.7 e e e
c0.6 W
g 0.5
+ 0.4
0'20 20 40 60 80 100

Data Time (k)

(b Google DeepMind General Artificial Intelligence



Overall Architecture

d. Memory Usage
a. Controller b. Read & Write Heads c. Memory & Temporal Links

e w
Output .
Write Vector i L
[ [ BN | ] " . h

Erase Vector
H EEEN EEm

Write Key

Read Key : h
I Read Mode
B F

Read Key . - :

Read Mode

BEF

-




