REINFORCEMENT LEARNING WITH
UNSUPERVISED AUXILIARY | ASKS

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki

Tom Schaul, Joel Z Leibo, David Silver, Koray Kavukcuoglu

ﬁ DeepMind

25th April 2017, ICLR



MOTIVATION

Deep reinforcement learning is very data hungry.
» Many steps to find sparse rewards.
» Scalar supervision (returns).
+ Neural networks with many parameters.
»  Slow stochastic gradient descent.

This work — augment an RL agent with
auxiliary prediction and control tasks.

This provides extra supervision to train
feature extractors resulting in

- |Ox improvement in data efficiency over A3C on
3D DeepMind Lab.
» 60% improvement in final scores over A3C.
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UNREAL
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UNsupervised REinforcement and Auxiliary Learning = UNREAL agent
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UNREAL augments an LSTM A3C agent with 3 auxiliary tasks.

Can be used on top of

DOQN,

D

DPG, TRPO, or other agents.

O Agent LSTM

C— Aux FC net
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Agent LSTM

BASE POLICY

Agent ConvNet

Aux DeConvNet
Aux FC net
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BASE POLICY

Base policy 1s an LSTM
agent trained with A3C
[Mnih 201 6]

Advantage actor-critic
algorithm with multiple
asynchronous workers.
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BASE POLICY O remism

Base A3C Agent v Aux DeConvNet

VT VT D Aux FC net
: : \ V7
Base policy i1san LSTM {5_ d—d‘

agent trained with A3C

[Mnih 2016] _Hﬂ“

Advantage actor-critic
algorithm with multiple
asynchronous workers.

UNREAL always acts in the environment with the base A3C policy.
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BASE POLICY O remeismy

Base A3C Agent v Aux DeConvNet

Base policy 1san LSTM ﬁ%%d—@

agent trained with A3C Replay Buffer

[Mnih 2016]. R _ H H “ } ..................................................... @

Advantage actor-critic
algorithm with multiple
asynchronous workers.

UNREAL always acts in the environment with the base A3C policy.

Stores sequences of transitions in a replay buffer.
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OFF PoLICY AUXILIARY TASKS Q rmiemy

C— Aux FC net
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Sampling sequences of transitions from replay allows us to perform
auxiliary tasks off-policy for feature learning — no need to for off-policy

correction.

Networks used for auxiliary tasks are welight shared to agent’'s network.
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AUXILIARY CONTROL O s

C— Aux FC net

Augment A3C with many Replay Buffer
auxiliary control tasks. @
earning to control many

aspects of the environment. = G
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Pixel Control

Pixel Control — learn to maximally change parts of the visual input.

Feature Control — learn to control the internal representations.
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PIXEL CONTROL O oo

A Agent ConvNet
v Aux DeConvNet

C— Aux FC net

Augment A3C with many Replay Buffer
auxiliary control tasks. @

Learning to control many
aspects of the environment. . %= e G

Pixel Control

Pixel Control — learn to maximally change parts of the visual input.

- Divide observation into cells.

» Learn a per-cell policy — dueling deconv net [Wang 2016].

- Reward Is absolute change in average pixel intensity In cell between
time steps.
+ Optimise with n-step Q-learning.
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REWARD PREDICTION O sewmisma

Focus agent’s features on
rewarding events.

prediction task.

Shape agent's CNN through

> Aux FC net
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Reward Prediction — learn to classity the next step reward.

»+ Sample mini-sequences — skewed sampling so 50% sequences end
IN Non-zero reward.

» Encode observations with agent's CNIN.

- Conca

‘enated encodings are used to classity +ve, zero, or -ve

rewalrC
‘U DeepMind

N subsequent frame.
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VALUE FUNCTION REPLAY

'b DeepMind

Reuse experience to faster
train value function.,

Better features to predict long
term reward.

O Agent LSTM

Value Function Replay — further training of value function.

* Sample sequences and per
- Bootstraps from values wh

orm value regression.
ich are not seen on-policy.

Value Function Replay
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UNREAL
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UNREAL optimises all 4 objectives simultaneously.

Minimal tuning on task balancing.

Lungear(0) = Lasc + AvRLVR + Apc Z E(C) + ArpLRp

O Agent LSTM

D Aux FC net
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ZAS DeepMind Lab EXPERIMENTS
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@ peepMind  60% improvement in final performance.

/A DeepMind Lab EXPERIMENTS

Tested on a surte of |3 levels.
| asertag, procedural mazes, apple foraging.
Compared to human performance.
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|Ox improvement in data efficiency. Significantly more robust to hyper

parameters.
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2@5 DeepMind Lab EXPERIMENTS

Control vs prediction vs reconstruction
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Input reconstruction can help inrtially but often harms policy.
Input change prediction helps much more.
Input control works best.
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2@5 DeepMind Lab EXPERIMENTS

6 DeepMind

Pixel Control vs Feature Control
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can work as well as pixel control.

mising future direction.

\
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ZAS DeepMind Lab EXPERIMENTS

() DeepMind Auxiliary Tasks
Live Play

Pixel Control

Q value for action
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ATARI EXPERIMENTS

6 DeepMind

State of the art results on Atari:

| 453% mean, 33 1% median of human performance across surte of 5/ games.
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SCALING RL

In 24 hours, UNREAL is close to solving
. nav_maze_static_O| while A3C Is just starting to
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SCALING RL

Overnight, in 8 hours, UNREAL starts learning.

. Add more workers?
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SCALING RL

4x workers means that overnight UNREAL Is

solving the level.
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SCALING RL

With 512 workers, can reach

a0 human performance in 2 hours.
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SCALING RL  Atari 1k workers
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CONCLUSION

Unsupervised auxiliary tasks drastically improve RL training

Pixel Control + Reward Prediction + Value Function Replay.
mprove speed of convergence, robustness to hyperparameters,
and results In better performance.

| Ox faster learning and 60% higher performance on DM Lab.
State of the art results on Atarl.

RL scales with CPUs
Adding more asynchronous workers to
A3C-style algorithms greatly speeds up
learning.
Super-human performance on complex
domains in a matter of hours.
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