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MOTIVATION

Deep reinforcement learning is very data hungry.
• Many steps to find sparse rewards.
• Scalar supervision (returns).
• Neural networks with many parameters.
• Slow stochastic gradient descent.

Unsupervised Learning for RL

This work — augment an RL agent with 
auxiliary prediction and control tasks.

This provides extra supervision to train
feature extractors resulting in

• 10x improvement in data efficiency over A3C on 
3D DeepMind Lab.

• 60% improvement in final scores over A3C.



UNsupervised REinforcement and Auxiliary Learning = UNREAL agent

UNREAL augments an LSTM A3C agent with 3 auxiliary tasks.

Can be used on top of DQN, DDPG, TRPO, or other agents.
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Base policy is an LSTM 
agent trained with A3C 
[Mnih 2016].

Advantage actor-critic 
algorithm with multiple 
asynchronous workers.
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UNREAL always acts in the environment with the base A3C policy.
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UNREAL always acts in the environment with the base A3C policy.

Stores sequences of transitions in a replay buffer.
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Base policy is an LSTM 
agent trained with A3C 
[Mnih 2016].

Advantage actor-critic 
algorithm with multiple 
asynchronous workers.
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Sampling sequences of transitions from replay allows us to perform 
auxiliary tasks off-policy for feature learning — no need to for off-policy 

correction.

Networks used for auxiliary tasks are weight shared to agent’s network.
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OFF POLICY AUXILIARY TASKS



Augment A3C with many 
auxiliary control tasks.

Learning to control many 
aspects of the environment.

Pixel Control — learn to maximally change parts of the visual input.

Feature Control — learn to control the internal representations.
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PIXEL CONTROL

Pixel Control — learn to maximally change parts of the visual input.
• Divide observation into cells.
• Learn a per-cell policy — dueling deconv net [Wang 2016].
• Reward is absolute change in average pixel intensity in cell between 

time steps.
• Optimise with n-step Q-learning.

Augment A3C with many 
auxiliary control tasks.

Learning to control many 
aspects of the environment.



Reward Prediction — learn to classify the next step reward.
• Sample mini-sequences — skewed sampling so 50% sequences end 

in non-zero reward.
• Encode observations with agent’s CNN.
• Concatenated encodings are used to classify +ve, zero, or -ve 

reward in subsequent frame.
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REWARD PREDICTION

Focus agent’s features on 
rewarding events.

Shape agent’s CNN through 
prediction task.



Value Function Replay — further training of value function.
• Sample sequences and perform value regression.
• Bootstraps from values which are not seen on-policy.
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VALUE FUNCTION REPLAY

Reuse experience to faster 
train value function.

Better features to predict long 
term reward.



UNREAL optimises all 4 objectives simultaneously.

Minimal tuning on task balancing.
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Tested on a suite of 13 levels.
Lasertag, procedural mazes, apple foraging. 
Compared to human performance.

Performance Robustness

10x improvement in data efficiency.

60% improvement in final performance.

Significantly more robust to hyper 
parameters.
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Control vs prediction vs reconstruction

Input reconstruction can help initially but often harms policy.
Input change prediction helps much more.

Input control works best.
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Pixel Control vs Feature Control

Feature control can work as well as pixel control.
Promising future direction.
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ATARI EXPERIMENTS

State of the art results on Atari: 
1453% mean, 331% median of human performance across suite of 57 games.
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A3C 32 workers
UNREAL 32 workers

In 24 hours, UNREAL is close to solving 
nav_maze_static_01 while A3C is just starting to 
learn.

Human Performance
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A3C 32 workers
UNREAL 32 workers

Overnight, in 8 hours, UNREAL starts learning.
Add more workers?

Human Performance
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A3C 32 workers

UNREAL 32 workers
UNREAL 128 workers

4x workers means that overnight UNREAL is 
solving the level.

Human Performance
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A3C 32 workers

UNREAL 32 workers
UNREAL 128 workers

UNREAL 512 workers

With 512 workers, can reach 
human performance in 2 hours.

Human Performance
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Alien

Frostbite

Robotank

Pong

Space Invaders

UNREAL

UNREAL

UNREAL

UNREAL

UNREAL

Evolution Strategies (ES) [Salimans 2017]

ES

ES

ES

ES

Atari 1k workers
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Unsupervised auxiliary tasks drastically improve RL training
• Pixel Control + Reward Prediction + Value Function Replay.
• Improve speed of convergence, robustness to hyperparameters, 

and results in better performance.
• 10x faster learning and 60% higher performance on DM Lab.
• State of the art results on Atari.

RL scales with CPUs
• Adding more asynchronous workers to 

A3C-style algorithms greatly speeds up 
learning.

• Super-human performance on complex 
domains in a matter of hours.
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