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Successes of Depth Abound



trustable, scalable, predictable



What makes optimization of deep models hard?

No clear consensus!
“We prove that recovering the global minimum becomes harder as the network 
size increases.” arXiv:1412.0233
“Difficulty originates from the proliferation of saddle points, not local minima, 
especially in high dimensional problems of practical interest. ” arXiv:1406.2572 
“Local extrema with low generalization error have a large proportion of almost-
zero eigenvalues in the Hessian with very few positive or negative eigenvalues. “ 
arXiv:1611.01838



It’s hard to hit a saddle
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It’s hard to hit a saddle
If you are not on the 

line {x=-y}, you diverge 
at an exponential rate

f(x, y) = xy

This picture fully generalizes to 
the nonconvex case

Thm: [Lee et al, 2016] For the short-step gradient method, the 
basin of attraction of strong saddle points has measure zero.

Simple consequence of the Stable Manifold Theorem (Smale et al)



This is our fault, optimizers.

• Too many fragile examples in 
text books

• Minor perturbations in initial 
conditions always repel you 
from saddles.
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Flatness is what makes things hard

�f(0) = 0

Deciding if there is a descent direction at 0 is NP-complete

Is 0 a global min, saddle, or global max?

�2f(0) = 0 f is super flat at 0.
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G has an clique of size larger than1/(1-s) if and only if 
0 is not a local minimizer*.

Q = I � A + s · 11T

A = adjacency 
matrix of G

Thm [Barak et al. 2016]: Finding a maximum clique is F-hard

* http://www.ti.inf.ethz.ch/ew/lehre/ApproxSDP09/notes/copositive.pdf
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If the best solutions are flat local minima, can we ever find them?

http://www.ti.inf.ethz.ch/ew/lehre/ApproxSDP09/notes/copositive.pdf


Is deep learning as hard as maximum clique?









Generalization in Machine Learning
Given: i.i.d. sample S = {z1,…,zn} from dist D

Goal: Find a good predictor function f

Minimize using SGD!unknown!

Empirical risk
(training error)

Population risk
(test error)

RS[f] = 1
n

n�

i=1
loss(f; zi)R[f] = Ezloss(f; z)

Generalization error: R[f] � RS[f]

How much empirical risk underestimates population risk

We can compute RS… When is it a good proxy for R?



training 
error

generalization 
error

population 
risk

• small training error implies risk ≅ generalization error
• zero training error does not imply overfitting

R[f] = (R[f] � RS[f]) + RS[f]

error vs best in class

approximation error

irreducible error

R[f] = (R[f] � R[fH])

+ (R[fH] � R[f�])

+ R[f�]

Fundamental Theorem of Machine Learning





Deep  
models

Models where p>20n are ubiquitous



• Model capacity

• Regularization (norms, dropout, etc.)

• Implicit regularization (early stopping)

• Data augmentation (fake data, crops, shifts, etc.)

All of these are sufficient but by no means necessary!

How to reduce generalization error?

Zhang, Bengio, Hardt, R., Vinyals



n=50,000
d=3,072
k=10

CIFAR10

Model parameters p/n
Train 
loss

Test 
error

CudaConvNet 145,578 2.9 0 23%

CudaConvNet
(with regularization)

145,578 2.9 0.34 18%

MicroInception 1,649,402 33 0 14%

ResNet 2,401,440 48 0 13%

What happens when I turn off the regularizers?



CIFAR10 with random labels
n=50,000
d=3,072
k=10

CudaConvNet MicroInception



MicroInception

n=50,000
d=3,072
k=10
p=1,649,402



accordion ant airplane

n = 1.3M
d = 150528
k = 1000

Rand. 
Labels

Fake 
Data

l2 reg/
dropout

Train 
top-1

Test 
top-1

Train 
top-5

Test 
top-5

No
N

Yes Yes 13.7% 23.4% 2.5% 6.5%
No Yes No 8.2% 27.1% 1.0% 9.0%
No No Yes 0.6% 29.8% 0% 11.2%
No No No 0.5% 39.7% 0% 19.3%
Yes No No 4.8% 99.9% 0.9% 99.5%

d > 20nInception model: 27 million parameters
arXiv:1512.00567v3



Deep Nets and Generalization

• Large, unregularized deep nets outperform shallower nets 
with regularization.

• Most models can fit arbitrary label patterns, even on large 
data-sets like imagenet.

• Popular models can fit structureless noise

How can we explain these phenomena?

Zhang, Bengio, Hardt, R., Vinyals



Avoiding overfitting is hard.
• This is true in the linear case too!

X n x p, n<p

Which solution should we pick?

• Infinite number of global minima. 
• All global minima have the same Hessian.
• At least p-n of the Hessian eigenvalues are zero.

minimize
w

�y � Xw�2



• Why do we generalize when fitting the labels exactly?
• Happens for linear models!

SGD solution

minimize
�n

i=1(w
Txi � yi)2

minimize �w�
subject to Xw = y
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If you run SGD you find the minimum norm solution

f(x) = wTx



• Why do we generalize when fitting the labels exactly?
• Happens for linear models!

SGD solution

minimize
�n

i=1(w
Txi � yi)2

minimize �w�
subject to Xw = y

If you run SGD you find the minimum norm solution

wt+1 = wt � �t
d loss

dz
xi wSGD =

n�

i=1
�ixi

xTi wSGD = yi wSGD satisfies KKT conditions



Avoiding overfitting is hard.
• This is true in the linear case too!

Sparsity Rank Smoothness Algorithm?

Can label interpolation work for linear models?

X n x p, n<p
• Infinite number of global minima. 

Which one should we pick?

• Regularize to leverage structure

minimize �w�A
subject to Xw = y



• If you run SGD you find minimum norm solution

SGD solution

minimize
�n

i=1(w
Txi � yi)2

minimize �w�
subject to Xw = y

KERNELIZE



Kc = y

Kij = k(xi, xj)

KERNELIZE
f(x) = wTx xT1x2 = k(x1, x2)

f�(x) =
n�

i=1
cik(xi, x)

SGD solution

minimize
�n

i=1(f(xi) � yi)2

minimize �f�
subject to f(xi) = yi

• If you run SGD you find minimum norm solution



data 
set pre-processing test  

error

MNIST none 1.2%

MNIST gabor filters 0.6%

CIFAR10 none 46%

CIFAR10 1-layer conv-net, 
32K random filters 16%

• Fit Kc = y where K is the Gaussian kernel

Overfitting with kernels
Procedure:

• 60k x 60k solve takes under 3 minutes with 24 cores

+L2 regularization 
gets this to 14%



Resolving “flat” vs “sharp”

minimize �w�
subject to Xw = y

minimize
�n

i=1(w
Txi � yi)2

When p>n, all local minima have the same curvature.

�w��1 is the margin of the classifier

Small norm ⇒ loss is stable to perturbations in parameters

Large norm ⇒ loss fluctuates with small perturbations to parameters
“sharp minimizer”

“flat minimizers?”
“sharp”

“flat”

“flat minimizer”

these ideas apply to deep nets Challenge: get reasonable bounds.



…margin all over again
• In statistical learning, when all population points are 

classified correctly, one can show

E[test error] � 4�f��k�
n

Inverse margin divided by 
�
n

Challenge: find comparable, reasonable margin bounds for 
deep learning that explain experimental phenomena.



• regularization complicates optimization
• saddle points might not be an issue
• interpolation need not mean overfitting
• large margin classification is a great idea!
• stable algorithms lead to stable models

What can deep learning learn from 
linear regression?

Stability and robustness are critical for 
guaranteeing safe, reliable performance of 

machine learning
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