Q-Prop: Toward Sample-Efficient & Stable Deep RL

Shixiang (Shane) Gu,

Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine

Reinforcement Learning

Goal: learn optimal policy that maximizes cumulative rewards

$$\max_{\pi} \mathbb{E}_{\pi}[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t})]$$

Computation bound Simulation

Potential applications

Data bound

Real-world

Deep RL in Robotics

On-policy RL

On-policy MC policy gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \hat{Q}(s_t, a_t)]$$

$$\hat{Q}(s_t, a_t) = \sum_{\tau \geq t} r(s_\tau, a_\tau)$$

$$\pi_{\theta}(a | s) = \mathcal{N}(\mu_{\theta}(s_t), \Sigma_{\theta}(s_t))$$

$$\pi : \text{on-policy}$$

- Unbiased gradient
- + Stable
- High-variance gradient
- Forgets experience
- Sample-intensive

Off-policy RL

Efficiency

Off-policy Actor-Critic

$$\min_{w} \mathbb{E}_{\beta}[(r(s_{t}, a_{t}) + \gamma Q(s_{t+1}, \mu_{\theta}(s_{t+1})) - Q_{w}(s_{t}, a_{t}))^{2}]$$

$$\max_{\theta} \mathbb{E}_{\beta}[Q_{w}(s_{t}, \mu_{\theta}(s_{t}))]$$

$$\nabla_{\theta}J(\theta) \approx \mathbb{E}_{\beta}[\nabla_{a}Q_{w}(s_{t}, a)|_{a=\mu_{\theta}(s_{t})}\nabla_{\theta}\mu_{\theta}(s_{t})]$$

$$\beta : \text{off-policy}$$

- Low-variance gradient
- + Reuse experience
- + Sample-efficient (relatively)
- Biased gradient
- Less Stable

On-policy + Off-policy RL

Stability + Efficiency

Q-Prop

$$\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi} [\nabla_{a} Q_{w}(s_{t}, a)|_{a=\mu_{\theta}(s_{t})} \nabla_{\theta} \mu_{\theta}(s_{t})]$$

Q-Prop

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [\nabla_{a} Q_{w}(s_{t}, a)|_{a=\mu_{\theta}(s_{t})} \nabla_{\theta} \mu_{\theta}(s_{t})]$$

+
$$\mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) (\hat{Q}(s_{t}, a_{t}) - \bar{Q}_{w}(s_{t}, a_{t}))]$$

 $\overline{Q}_w(s_t, a_t)$: first-order Taylor exp. of Q_w at $a_t = \mu_{\theta}(s_t)$

$$\nabla_{\theta}J(\theta) = \mathbb{E}_{\underline{\pi}}[\nabla_{a}Q(\underline{s_{t},a})|_{\underline{a}=\mu_{\theta}(s_{t})}\nabla_{\theta}\mu_{\theta}(s_{t})] - \text{higher variance}$$

$$+\mathbb{E}_{\pi}[\nabla_{\theta}\log\pi_{\theta}(a_{t}|s_{t})(\hat{Q}(s_{t},a_{t})-Q_{w}(s_{t},\mu_{\theta}(s_{t}))-\nabla_{a_{t}}Q_{w}(s_{t},a_{t})|_{\underline{a_{t}}=\mu_{\theta}(s_{t})}(\overline{a_{t}}-\mu_{\theta}(s_{t}))]$$

Critic can be fitted off-policy.

Policy is fitted on-policy.

+ unbiased policy gradient

+ low-variance grad from critic

+ sample-efficiency & stability

+modular

-more computation

-higher variance if critic is bad

Analysis

When does Q-Prop help? - When variance is reduced.

Q-Prop is a control variate [Ross, 2002]

 use a correlated variable with known expected value to reduce variance of an estimator

$$\bar{f} = \mathbb{E}[f(x)] = \mathbb{E}[f(x) - \eta g(x) + \eta \bar{g}] = \mathbb{E}[\tilde{f}(x)]$$

$$Var(\tilde{f}) = Var(f) + \eta^2 Var(g) - 2\eta Cov(f, g)$$

+ Large variance reduction if f & g strongly correlated

$$\eta^* = \text{Cov}(f, g)/\text{Var}(g)$$
 \longrightarrow $\text{Var}(\tilde{f}) = (1 - \rho(f, g)^2)\text{Var}(f)$

+ Guaranteed variance reduction if f & g are correlated

Analysis

Adaptive Q-Prop

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) (\hat{Q} - \eta(s_t) \bar{Q}_w)]$$
$$+ \mathbb{E}_{\pi} [\eta(s_t) \nabla_{a} Q_w |_{a = \mu_{\theta}(s_t)} \nabla_{\theta} \mu_{\theta}(s_t)]$$

"Optimal" adaptation

$$\eta^*(s_t) = \operatorname{Cov}(\hat{Q}, \bar{Q}_w) / \operatorname{Var}(\bar{Q}_w) \longrightarrow \operatorname{Var}(\hat{Q} - \eta^* \bar{Q}_w) = (1 - \rho(\hat{Q}, \bar{Q}_w)^2) \operatorname{Var}(\hat{Q})$$

+ guaranteed reduction on learning signal variance

Conservative Q-Prop

$$\eta(s_t) = \begin{cases} 1, & \text{if } \hat{\text{Cov}}(\hat{Q}, \bar{Q}_w) > 0 \\ 0, & \text{otherwise} \end{cases}$$

Q-Prop Diagram

Update policy with Q-Prop gradient

 \mathcal{R} : use on-policy batch samples ${\mathcal R}$: use off-policy samples from replay Collect samples by rolling out policy π_{θ} on-policy: state baseline, GAE [TRPO-GAE, Schulman et. al., 2016] Compute Monte Carlo critic \mathcal{B} Add samples to replay \mathcal{R} off-policy policy evaluation: replay, target network [DDPG, Lillicrap et. al., 2016] Update off-policy critic \mathcal{R} \mathcal{B} Compute baseline critic \mathcal{B} Compute Q-Prop mask η Q-Prop steps

 π_{θ}

on-policy: trust-region

[TRPO-GAE, Schulman et. al., 2016]

Experiments

Q-Prop + TRPO-GAE vs. TRPO-GAE vs. DDPG

[Gu et. al., 2017]

SOA on-policy [Schulman et. al., 2016]

SOA off-policy [Lillicrap et. al., 2016]

- + more sample-efficient than TRPO-GAE
- + more stable than DDPG
- requires smaller batch size than TRPO-GAE

Experiments

MuJoCo, OpenAl Gym

		TR-c-Q-Prop		TRPO		DDPG	
Domain	Threshold	MaxReturn.	Episodes	MaxReturn	Epsisodes	MaxReturn	Episodes
Ant	3500	3534	4975	4239	13825	957	N/A
HalfCheetah	4700	4811	20785	4734	26 370	7490	600
Hopper	2000	2957	5945	2486	5715	2604	965
Humanoid	2500	>3492	14750	918	>30000	552	N/A
Reacher	-7	-6.0	2060	-6.7	2840	-6.6	1800
Swimmer	90	103	2045	110	3025	150	500
Walker	3000	4030	3685	3567	18875	3626	2125

⁺ results appear consistent across multiple domains

Relation to other work

Q-Prop

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) (\hat{Q} - \bar{Q}_w)] + \mathbb{E}_{\pi} [\nabla_a Q_w |_{a = \mu_{\theta}(s_t)} \nabla_{\theta} \mu_{\theta}(s_t)]$$

Directly mixing on-policy and off-policy

$$\nabla_{\theta} J(\theta) \approx \nu \mathbb{E}_{\pi} [\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \hat{Q}] + (1 - \nu) \mathbb{E}_{\beta} [\nabla_{a} Q_w |_{a = \mu_{\theta}(s_t)} \nabla_{\theta} \mu_{\theta}(s_t)]$$

Mixing on-policy and off-policy deep RL

- ACER [Wang et. al., 2017], PGQ [O'Donoghue et. al., 2017]

Take-away Messages

Q-Prop: take off-policy algorithm and correct it with on-policy algorithm on residuals

For RL:

- Toward sample-efficient & stable algorithm
- Toward off-policy policy gradient

For ML:

- An efficient, biased algorithm with a correct algorithm on the residuals
 - Stochastic discrete networks
 - MuProp [Gu et. al., 2016], REBAR [Tucker et. al., 2017]
 - Model-based RL?
 - PILQR [Chebotar et. al., 2017]
 - Synthetic gradients?
 - GANs?

Thank you!

Acknowledgements:

openai/rllab OpenAl Gym

