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Super Resolution

e Inverse problem: Given low
resolution representation x
reconstruct high resolution imagey




Ranked Inference Choices

1. Empirical Risk Minimization: minimize aloss function measuring what we care about
(We don’t know the right loss function, in fact we can’'t even measure perceptual quality)

minE, . [((y, fo(2))] = min By o[0(y, )]

2.  Maximum a Posteriori (MAP) inference using knowledge of image prior
(We don’t know the prior)

3. Approximate MAP



Motivation: Blurry Images

e MSE is the wrong objective for photo-realistic results

MSE Super-Resolution (4x) Original HR




Motivation: The Divergence Perspective

Data KL[P|Q] JSD[PIQ] KL[QIP]
Maximum Likelihood Original GAN criterion Modified GAN criterion
(overdispersed) (in between) (mode seeking)




Motivation: The 2D Perspective

Target: 2D Highresolution, y=[y,,y,] drawn from a Swiss-roll

Input: 1D Low resolution, x=(y,+y,)/2, average of high resolution
_ _____ F— . /
Example
Input: x=0.5

Y2

Valid outputs fall on the line:y, = 1-y,

hn



Approximate Amortized MAP Inference
e Maximize Log-posterior evaluated at the predicted output

argmax K, logpy x(fo(x)|x)
0 N——

(]

e Decomposed via Bayes’ rule

argmax {E; log px |y (z1fo(2)) + E log py (fo(w)) ;
' Y
Likelihood Prior
data consistency plausible output




Data Consistency: affine projections

o Input r = Ay N — L

Linear downsampling
(strided convolution)

e Affine Projected Network
go(z) = 112 fo(x) s f

= (I — $+A)f9(a:) + Atz

Moore-Penrose pseudo inverse of A
(subpixel (transposed) convolution)

e For Affine projected networks the likelihood is

always maximally satisfied and can be ignored U1
arggnax { + E; log py (gs (w))}




Plausible output: Cross Entropy

e Cross Entropy objective

aTgImax Ee~pyx logpy (go(z)) = argmax Egnqgo log py (9)

= argmin H|qgg, py], Vo : Age(z) ==
0

e We propose three methods to optimize this
1. AffGAN: GAN using modified update rule minimizing KL|qs||py ] = H|qs, py] — H|gs]

2. AffDAE: Optimize using gradients from denoiser alogp(y) = ff’*(gl_ L O(0?) as o—0
Y g

3. AffLL: Fit differentiable parametric density model to the image distribution and get gradient
estimates directly.



Fix GAN Instability: Instance Noise

e The data and model distributions will most

likely not share support
o Discriminator can always perfectly separate the
samples
o KL-divergence is undefined and in general the
GAN convergence proof does not hold
o No gradient to train generator

Perfectly separable distributions

e Instance Noise: Broaden support of model and

data distributions by adding gaussian noise
o Minimises: argmin KL [gg * pn||py * Dn]
0

(Arjovsky & and Bottou, ICLR 2017 arrives at the same solution)



2D Super resolution - Revisited

Target: 2D Highresolution, y=[y,,y,] drawn from a Swiss-roll
Input: 1D Low resolution, x= (y1+y2)/2, average of high resolution

e-® MSE
e MAE
e gGAN
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Results - Grass textures




Natural Images

e Mode seeking behavior
Input:

Low-res

e Correctoutput is often ambiguous Output I
o  Stochastic extension High-res /.

Target Fi §
High-res { r




AffGAN as Variational Inference

e Stochastic Affine Projected GAN (StAffGAN)

(All two letter GAN acronyms were occupied)

e Add noise source z in addition to input x
qv;0 = EgnpxBznp, 0 (y — 96 (377 Z))
e For super-resolution we can show that

al”géﬂin KL[gy0l[py ] = al”g;ﬂin KL[gy|x;0|lpy|x]

e Consequence: StAffGAN performs Variational Inference for image super-resolution only
requiring samples from p, and b,





https://docs.google.com/file/d/0B85ht3LAk7iYU0hUd3VWVEFiOHM/preview
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Conclusion

e Affine projections restricting model to the affine subspace of valid solutions

e We proposed three methods for amortized MAP inference in image super-resolution
o A modified GAN objective
o Denoiser guided optimization
o Direct parametric likelihood modelling

e Inpractice the GAN based objective produced the visually most appealing results
e Provide theoretical grounding for GANs in generative models

e We showed how GAN models be seen as performing Amortized Variational Inference



Further Slides



How to compute A’

e Inthelanguage of Deep Learning:
o Aisastrided convolution with, say, Gaussian kernel
o ATisasubpixel (transposed)convolution

e Forfixed A, we find A" via numerical optimization:

6 (B) =By, || Ay — ABAy||3
lo(B) = E,n,||Bx — BABx|3
AT = argming (¢ (B) + ¢3(B))

Eq log p(x[7)

Likelihood




Can Affine Projected Networks learn?

e Proof of Concept using MSE

MSE, low-res,

MSE, high-res SSIM, high-res (consistency)
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Legend tuple indicate:
(F)ixed / (T)rainable affine transformation, (R)andom / (T)rained initialization of transformation



Approximate MAP inference - Method 1: Model p(y)

e Directly model log[p(y)] using maximum likelihood learning
o Fitdifferentiable parametric model to log[p(y)]
o maximize f(x) using gradients of log[p(y)]

e Weuse with PixelCNN + MCGSM
o  PixelCNN: Convolutional Network satisfying the Chain Rule*
o  MCGSM: Mixture of Conditional Gaussians Scale Mixture model**

*Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. arXiv preprint arXiv:1601.06759, 2016. ]E:;:: 10g p(
** Theis, Lucas, and Matthias Bethge. Generative image modeling using spatial Istms. e -~
Advances in Neural Information Processing Systems. 2015. Prior
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Approximate MAP inference - Method 2: DAE

e To maximize the prior we need the gradients

- ) 0 o
20 Ez(logp(9)] = Eq @logp(y) 257

e Luckily these can be approximated using a Denoising Autoencoder *

Ologp(y)  fo(¥)—y

oy 3 +0(0?*) as o —0

E, logp(y)

*Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the ’
data-generating distribution. Journal of Machine Learning Research, 15(1):3563-3593, 2014. Prior



Approximate MAP inference - Method 3: GAN

e We propose a modified GAN update rule that minimizes KL[Q|P]

KL[Q|P] =E,.q [log Q(y) — log P(y))]
= Ey~q [log Q(y)] — Eynq [log P(y)]
= —Hy(Q) — Eyq [log P(y)]

e Minimizing KL[Q|P] = Maximize MAP + Entropy-term

E. log p(

N

Prior



Super Resolution

e Inverse problem: Given low
resolution representation x
reconstruct high resolution imagey

e Ambiguous/Multimodal




