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Super Resolution

● Inverse problem: Given low 
resolution representation x 
reconstruct high resolution image y



Ranked Inference Choices

1. Empirical Risk Minimization: minimize a loss function measuring what we care about
(We don’t know the right loss function, in fact we can’t even measure perceptual quality)

2. Maximum a Posteriori (MAP) inference using knowledge of image prior
(We don’t know the prior)

3. Approximate MAP



Motivation: Blurry Images

 

Original HRMSE Super-Resolution (4x)

● MSE is the wrong objective for photo-realistic results



Motivation: The Divergence Perspective

Data KL[P|Q]
Maximum Likelihood

(overdispersed)

JSD[PIQ]
Original GAN criterion

(in between)

KL[QIP]
Modified GAN criterion

(mode seeking)



Motivation: The 2D Perspective

Example
Input:  x = 0.5
Valid outputs fall on the line: y

1
= 1- y

2

Target: 2D High resolution, y= [y
1

, y
2

]  drawn from a Swiss-roll
Input: 1D Low resolution, x = (y

1
+y

2
)/2, average of high resolution



Approximate Amortized MAP Inference

● Maximize Log-posterior evaluated at the predicted output

● Decomposed via Bayes’ rule

Likelihood
data consistency

Prior
plausible output



Data Consistency: affine projections

● Input

Linear downsampling 
(strided convolution)

Moore-Penrose pseudo inverse of A
( subpixel (transposed) convolution)

● Affine Projected Network

● For Affine projected networks the likelihood is 
always maximally satisfied and can be ignored



Plausible output: Cross Entropy

● We propose three methods to optimize this

3. AffLL: Fit differentiable parametric density model to the image distribution and get gradient 

estimates directly.

2. AffDAE: Optimize using gradients from denoiser

1. AffGAN: GAN using modified update rule minimizing

● Cross Entropy objective



Fix GAN Instability: Instance Noise

● The data and model distributions will most 
likely not share support
○ Discriminator can always perfectly separate the 

samples

○ KL-divergence is undefined and in general the 

GAN convergence proof does not hold

○ No gradient to train generator

● Instance Noise: Broaden support of model and 
data distributions by adding gaussian noise
○ Minimises: 

(Arjovsky & and Bottou, ICLR 2017 arrives at the same solution)

Perfectly separable distributions

Instance Noise



2D Super resolution - Revisited
Target: 2D High resolution, y= [y

1
, y

2
]  drawn from a Swiss-roll

Input: 1D Low resolution, x = (y
1

+y
2

)/2, average of high resolution



Results - Grass textures

MSE AffGAN AffDG AffLLy

x



Natural Images

Target 
High-res

● Correct output is often ambiguous
○ Stochastic extension

Output
High-res

Input: 
Low-res

● Mode seeking behavior



AffGAN as Variational Inference

● Stochastic Affine Projected GAN (StAffGAN)
(All two letter GAN acronyms were occupied)

● Add noise source z in addition to input x

● For super-resolution we can show that

● Consequence: StAffGAN performs Variational Inference for image super-resolution only 
requiring samples from p

X
 and p

y
 



https://docs.google.com/file/d/0B85ht3LAk7iYU0hUd3VWVEFiOHM/preview
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Conclusion

● Affine projections restricting model to the affine subspace of valid solutions

● We proposed three methods for amortized MAP inference in image super-resolution
○ A modified GAN objective 

○ Denoiser guided optimization

○ Direct parametric likelihood modelling

● In practice the GAN based objective produced the visually most appealing results 

● Provide theoretical grounding for GANs in generative models

● We showed how GAN models be seen as performing Amortized Variational Inference



Further Slides



How to compute A+

● In the language of Deep Learning:
○ A is a strided convolution with, say, Gaussian kernel

○ A+ is a subpixel  (transposed) convolution

● For fixed A, we find A+ via numerical optimization:

  



Can Affine Projected Networks learn?

● Proof of Concept using MSE

  

Legend tuple indicate:
(F)ixed / (T)rainable  affine transformation, (R)andom / (T)rained initialization of transformation 

MSE, high-res SSIM, high-res
MSE, low-res, 
(consistency)



Approximate MAP inference - Method 1: Model p(y)

● Directly model log[p(y)] using maximum likelihood learning
○ Fit differentiable parametric model to log[p(y)]

○ maximize f(x) using gradients of log[p(y)]

● We use with PixelCNN + MCGSM 
○ PixelCNN: Convolutional Network satisfying the Chain Rule*

○ MCGSM: Mixture of Conditional Gaussians Scale Mixture model**

*Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural 
networks. arXiv preprint arXiv:1601.06759, 2016.
** Theis, Lucas, and Matthias Bethge. Generative image modeling using spatial lstms. 
Advances in Neural Information Processing Systems. 2015.



Approximate MAP inference - Method 2: DAE

● To maximize the prior we need the gradients

● Luckily these can be approximated using a Denoising Autoencoder *

*Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the 

data-generating distribution. Journal of Machine Learning Research, 15(1):3563–3593, 2014.



Approximate MAP inference - Method 3: GAN

● We propose a modified GAN update rule that minimizes KL[Q|P]

● Minimizing KL[Q|P] ⇒ Maximize MAP + Entropy-term 



Super Resolution

● Inverse problem: Given low 
resolution representation x 
reconstruct high resolution image y

● Ambiguous / Multimodal 


