Amortised MAP Inference for Image Super-resolution

Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi & Ferenc Huszár ICLR 2017

Super Resolution

 Inverse problem: Given low resolution representation x reconstruct high resolution image y

Ranked Inference Choices

1. Empirical Risk Minimization: minimize a loss function measuring what we care about (We don't know the right loss function, in fact we can't even measure perceptual quality)

$$\min_{\theta} \mathbb{E}_{y,x}[\ell(y, f_{\theta}(x))] = \min_{\theta} \mathbb{E}_{y,x}[\ell(y, \hat{y})]$$

2. Maximum a Posteriori (MAP) inference using knowledge of image prior (We don't know the prior)

3. Approximate MAP

Motivation: Blurry Images

MSE is the wrong objective for photo-realistic results

MSE Super-Resolution (4x)

Original HR

Motivation: The Divergence Perspective

Motivation: The 2D Perspective

Target: 2D High resolution, $y = [y_1, y_2]$ drawn from a Swiss-roll Input: 1D Low resolution, $x = (y_1 + y_2)/2$, average of high resolution

 y_1

Example

Input: x = 0.5

Valid outputs fall on the line: $y_1 = 1 - y_2$

Approximate Amortized MAP Inference

Maximize Log-posterior evaluated at the predicted output

$$\underset{\theta}{\operatorname{argmax}} \mathbb{E}_{x \sim p_x} \log p_{Y|X}(\underbrace{f_{\theta}(x)}_{\hat{y}}|x)$$

Decomposed via Bayes' rule

$$\underset{\theta}{\operatorname{argmax}} \left\{ \mathbb{E}_{x} \log p_{X|Y}(x|f_{\theta}(x)) + \mathbb{E}_{x} \log p_{Y}(f_{\theta}(x)) \right\}$$

$$\underset{\text{data consistency}}{\operatorname{Likelihood}} \qquad \underset{\text{plausible output}}{\operatorname{Prior}}$$

Data Consistency: affine projections

Input

$$x = Ay$$

Linear downsampling (strided convolution)

Affine Projected Network

$$g_{\theta}(x) = \Pi_x^A f_{\theta}(x)$$
$$= (I - A^+ A) f_{\theta}(x) + A^+ x$$

Moore-Penrose pseudo inverse of A (subpixel (transposed) convolution)

 For Affine projected networks the likelihood is always maximally satisfied and can be ignored

$$\underset{\theta}{\operatorname{argmax}} \left\{ \mathbb{E}_{x} \log p_{X|Y}(x|g_{\theta}(x)) + \mathbb{E}_{x} \log p_{Y}(g_{\theta}(x)) \right\}$$

Plausible output: Cross Entropy

Cross Entropy objective

$$\underset{\theta}{\operatorname{argmax}} \mathbb{E}_{x \sim p_X} \log p_Y(g_{\theta}(x)) = \underset{\theta}{\operatorname{argmax}} \mathbb{E}_{\hat{y} \sim q_{\theta}} \log p_Y(\hat{y})$$
$$= \underset{\theta}{\operatorname{argmin}} \mathbb{H}[q_{\theta}, p_Y], \quad \forall x : A g_{\theta}(x) = x$$

- We propose three methods to optimize this
 - 1. AffGAN: GAN using modified update rule minimizing $ext{ KL}[q_ heta\|p_Y]=\mathbb{H}[q_ heta,p_Y]-\mathbb{H}[q_ heta]$
 - 2. AffDAE: Optimize using gradients from denoiser $\frac{\partial \log p(y)}{\partial y} = \frac{f_{\sigma}^*(\tilde{y}) y}{\sigma^2} + \mathcal{O}(\sigma^2)$ as $\sigma \to 0$
 - 3. AffLL: Fit differentiable parametric density model to the image distribution and get gradient estimates directly.

Fix GAN Instability: Instance Noise

- The data and model distributions will most likely not share support
 - Discriminator can always perfectly separate the samples
 - KL-divergence is undefined and in general the GAN convergence proof does not hold
 - No gradient to train generator
- Instance Noise: Broaden support of model and data distributions by adding gaussian noise
 - \circ Minimises: $\underset{\theta}{\operatorname{argmin}} \operatorname{KL} \left[q_{\theta} * p_n || p_Y * p_n \right]$

(Arjovsky & and Bottou, ICLR 2017 arrives at the same solution)

2D Super resolution - Revisited

Target: 2D High resolution, $y = [y_1, y_2]$ drawn from a Swiss-roll

Input: 1D Low resolution, $x = (y_1 + y_2)/2$, average of high resolution

Results - Grass textures

Natural Images

Mode seeking behavior

Correct output is often ambiguous

Stochastic extension

Input: Low-res

Target High-res

AffGAN as Variational Inference

Stochastic Affine Projected GAN (StAffGAN)
 (All two letter GAN acronyms were occupied)

Add noise source z in addition to input x

$$q_{Y;\theta} = \mathbb{E}_{x \sim p_X} \mathbb{E}_{z \sim p_Z} \delta \left(y - g_{\theta}(x, z) \right)$$

For super-resolution we can show that

$$\underset{\theta}{\operatorname{argmin}} \operatorname{KL}[q_{Y;\theta} || p_Y] = \underset{\theta}{\operatorname{argmin}} \operatorname{KL}[q_{Y|X;\theta} || p_{Y|X}]$$

• Consequence: StAffGAN performs **Variational Inference** for image super-resolution only requiring samples from p_X and p_V

Conclusion

- Affine projections restricting model to the affine subspace of valid solutions
- We proposed three methods for amortized MAP inference in image super-resolution
 - A modified GAN objective
 - Denoiser guided optimization
 - Direct parametric likelihood modelling
- In practice the GAN based objective produced the visually most appealing results
- Provide theoretical grounding for GANs in generative models
- We showed how GAN models be seen as performing Amortized Variational Inference

Further Slides

How to compute A⁺

- In the language of Deep Learning:
 - A is a strided convolution with, say, Gaussian kernel
 - A⁺ is a subpixel (transposed) convolution
- For fixed A, we find A⁺ via numerical optimization:

$$\ell_1(B) = \mathbb{E}_{y \sim \mathcal{N}_{rd}} ||Ay - ABAy||_2^2$$

$$\ell_2(B) = \mathbb{E}_{x \sim \mathcal{N}_d} ||Bx - BABx||_2^2$$

$$A^+ = \operatorname{argmin}_B(\ell_1(B) + \ell_2(B))$$

$$\max_{ heta} \left\{ \underbrace{\mathbb{E}_x \log p(x|\hat{y})}_{ ext{Likelihood}} + \underbrace{\mathbb{E}_x \log p(\hat{y})}_{ ext{Prior}} - \underbrace{\mathbb{E}_x \log p(x)}_{ ext{Evidence}}
ight\}$$

Can Affine Projected Networks learn?

Proof of Concept using MSE

Legend tuple indicate: (F)ixed / (T)rainable affine transformation, (R)andom / (T)rained initialization of transformation

Approximate MAP inference - Method 1: Model p(y)

- Directly model log[p(y)] using maximum likelihood learning
 - Fit differentiable parametric model to log[p(y)]
 - maximize f(x) using gradients of log[p(y)]
- We use with PixelCNN + MCGSM
 - PixelCNN: Convolutional Network satisfying the Chain Rule*
 - MCGSM: Mixture of Conditional Gaussians Scale Mixture model**

$$\max_{\theta} \left\{ \underbrace{\mathbb{E}_{x} \log p(x|\hat{y})}_{\text{Likelihood}} + \underbrace{\mathbb{E}_{x} \log p(\hat{y})}_{\text{Prior}} - \underbrace{\mathbb{E}_{x} \log p(x)}_{\text{Evidence}} \right\}$$

^{*}Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759, 2016.

^{**} Theis, Lucas, and Matthias Bethge. Generative image modeling using spatial Istms. Advances in Neural Information Processing Systems. 2015.

Approximate MAP inference - Method 2: DAE

• To maximize the prior we need the gradients

$$\frac{\partial}{\partial \theta} \mathbb{E}_x[\log p(\hat{y})] = \mathbb{E}_x \left[\frac{\partial}{\partial y} \log p(y) \cdot \frac{\partial}{\partial \theta} \hat{y} \right]$$

Luckily these can be approximated using a Denoising Autoencoder *

$$\frac{\partial \log p(y)}{\partial u} = \frac{f_{\sigma}^*(\tilde{y}) - y}{\sigma^2} + \mathcal{O}(\sigma^2) \quad \text{as} \quad \sigma \to 0$$

$$\max_{ heta} \left\{ \underbrace{\mathbb{E}_x \log p(x|\hat{y})}_{ ext{Likelihood}} + \underbrace{\mathbb{E}_x \log p(\hat{y})}_{ ext{Prior}} - \underbrace{\mathbb{E}_x \log p(x)}_{ ext{Evidence}}
ight\}$$

*Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-generating distribution. Journal of Machine Learning Research, 15(1):3563–3593, 2014.

Approximate MAP inference - Method 3: GAN

We propose a modified GAN update rule that minimizes KL[Q|P]

$$KL[Q|P] = \mathbb{E}_{y \sim Q} \left[\log Q(y) - \log P(y) \right]$$

$$= \mathbb{E}_{y \sim Q} \left[\log Q(y) \right] - \mathbb{E}_{y \sim Q} \left[\log P(y) \right]$$

$$= -H_y(Q) - \mathbb{E}_{y \sim Q} \left[\log P(y) \right]$$

Minimizing KL[Q|P] ⇒ Maximize MAP + Entropy-term

$$\max_{\theta} \left\{ \underbrace{\mathbb{E}_{x} \log p(x|\hat{y})}_{\text{Likelihood}} + \underbrace{\mathbb{E}_{x} \log p(\hat{y})}_{\text{Prior}} - \underbrace{\mathbb{E}_{x} \log p(x)}_{\text{Evidence}} \right\}$$

Super Resolution

 Inverse problem: Given low resolution representation x reconstruct high resolution image y

Ambiguous / Multimodal

