Skip to yearly menu bar Skip to main content


Spotlight

DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models

Chong Mou · Xintao Wang · Jiechong Song · Ying Shan · Jian Zhang

[ ]

Abstract:

Despite the ability of existing large-scale text-to-image (T2I) diffusion models to generate high-quality images from detailed textual descriptions, they often lack the ability to precisely edit the generated or real images. In this paper, we propose a novel image editing method, DragonDiffusion, enabling Drag-style manipulation on Diffusion models. Specifically, we treat image editing as the change of feature correspondence in a pre-trained diffusion model. By leveraging feature correspondence, we develop energy functions that align with the editing target, transforming image editing operations into gradient guidance. Based on this guidance approach, we also construct multi-scale guidance that considers both semantic and geometric alignment. Furthermore, we incorporate a visual cross-attention strategy based on a memory bank design to ensure consistency between the edited result and original image. Benefiting from these efficient designs, all content editing and consistency operations come from the feature correspondence without extra model fine-tuning or additional modules. Extensive experiments demonstrate that our method has promising performance on various image editing tasks, including editing within a single image (e.g., object moving, resizing, and content dragging) and across images (e.g., appearance replacing and object pasting).

Chat is not available.