Poster
Learning Latent Superstructures in Variational Autoencoders for Deep Multidimensional Clustering
Xiaopeng Li · Zhourong Chen · Leonard Poon · Nevin Zhang
Great Hall BC #83
Keywords: [ unsupervised learning ] [ deep learning ] [ variational autoencoder ] [ graphical model ] [ latent tree model ] [ latent variable model ] [ bayesian network ] [ structure learning ] [ stepwise em ] [ message passing ] [ multidimensional clustering ]
We investigate a variant of variational autoencoders where there is a superstructure of discrete latent variables on top of the latent features. In general, our superstructure is a tree structure of multiple super latent variables and it is automatically learned from data. When there is only one latent variable in the superstructure, our model reduces to one that assumes the latent features to be generated from a Gaussian mixture model. We call our model the latent tree variational autoencoder (LTVAE). Whereas previous deep learning methods for clustering produce only one partition of data, LTVAE produces multiple partitions of data, each being given by one super latent variable. This is desirable because high dimensional data usually have many different natural facets and can be meaningfully partitioned in multiple ways.
Live content is unavailable. Log in and register to view live content