Neural Processes with Stochastic Attention: Paying more attention to the context dataset
Mingyu Kim · Kyeong Ryeol Go · Se-Young Yun
Neural processes (NPs) aim to stochastically complete unseen data points based on a given context dataset. NPs essentially leverage a given dataset as a context representation to derive a suitable identifier for a novel task. To improve the prediction accuracy, many variants of NPs have investigated context embedding approaches that generally design novel network architectures and aggregation functions satisfying permutation invariant. In this work, we propose a stochastic attention mechanism for NPs to capture appropriate context information. From the perspective of information theory, we demonstrate that the proposed method encourages context embedding to be differentiated from a target dataset, allowing NPs to consider features in a target dataset and context embedding independently. We observe that the proposed method can appropriately capture context embedding even under noisy data sets and restricted task distributions, where typical NPs suffer from a lack of context embeddings. We empirically show that our approach substantially outperforms conventional NPs in various domains through 1D regression, predator-prey model, and image completion. Moreover, the proposed method is also validated by MovieLens-10k dataset, a real-world problem.
Geometric Transformers for Protein Interface Contact Prediction
Alex Morehead · Chen Chen · Jianlin Cheng
Computational methods for predicting the interface contacts between proteins come highly sought after for drug discovery as they can significantly advance the accuracy of alternative approaches, such as protein-protein docking, protein function analysis tools, and other computational methods for protein bioinformatics. In this work, we present the Geometric Transformer, a novel geometry-evolving graph transformer for rotation and translation-invariant protein interface contact prediction, packaged within DeepInteract, an end-to-end prediction pipeline. DeepInteract predicts partner-specific protein interface contacts (i.e., inter-protein residue-residue contacts) given the 3D tertiary structures of two proteins as input. In rigorous benchmarks, DeepInteract, on challenging protein complex targets from the 13th and 14th CASP-CAPRI experiments as well as Docking Benchmark 5, achieves 14% and 1.1% top L/5 precision (L: length of a protein unit in a complex), respectively. In doing so, DeepInteract, with the Geometric Transformer as its graph-based backbone, outperforms existing methods for interface contact prediction in addition to other graph-based neural network backbones compatible with DeepInteract, thereby validating the effectiveness of the Geometric Transformer for learning rich relational-geometric features for downstream tasks on 3D protein structures.
Iterated Reasoning with Mutual Information in Cooperative and Byzantine Decentralized Teaming
Sachin Konan · Esmaeil Seraj · Matthew Gombolay
Information sharing is key in building team cognition and enables coordination and cooperation. High-performing human teams also benefit from acting strategically with hierarchical levels of iterated communication and rationalizability, meaning a human agent can reason about the actions of their teammates in their decision-making. Yet, the majority of prior work in Multi-Agent Reinforcement Learning (MARL) does not support iterated rationalizability and only encourage inter-agent communication, resulting in a suboptimal equilibrium cooperation strategy. In this work, we show that reformulating an agent's policy to be conditional on the policies of its neighboring teammates inherently maximizes Mutual Information (MI) lower-bound when optimizing under Policy Gradient (PG). Building on the idea of decision-making under bounded rationality and cognitive hierarchy theory, we show that our modified PG approach not only maximizes local agent rewards but also implicitly reasons about MI between agents without the need for any explicit ad-hoc regularization terms. Our approach, InfoPG, outperforms baselines in learning emergent collaborative behaviors and sets the state-of-the-art in decentralized cooperative MARL tasks. Our experiments validate the utility of InfoPG by achieving higher sample efficiency and significantly larger cumulative reward in several complex cooperative multi-agent domains.
Effective Model Sparsification by Scheduled Grow-and-Prune Methods
Xiaolong Ma · Minghai Qin · Fei Sun · Zejiang Hou · Kun Yuan · Yi Xu · Yanzhi Wang · Yen-Kuang Chen · Rong Jin · Yuan Xie
Deep neural networks (DNNs) are effective in solving many real-world problems. Larger DNN models usually exhibit better quality (e.g., accuracy) but their excessive computation results in long inference time. Model sparsification can reduce the computation and memory cost while maintaining model quality. Most existing sparsification algorithms unidirectionally remove weights, while others randomly or greedily explore a small subset of weights in each layer for pruning. The limitations of these algorithms reduce the level of achievable sparsity. In addition, many algorithms still require pre-trained dense models and thus suffer from large memory footprint. In this paper, we propose a novel scheduled grow-and-prune (GaP) methodology without having to pre-train a dense model. It addresses the shortcomings of the previous works by repeatedly growing a subset of layers to dense and then pruning them back to sparse after some training. Experiments show that the models pruned using the proposed methods match or beat the quality of the highly optimized dense models at 80% sparsity on a variety of tasks, such as image classification, objective detection, 3D object part segmentation, and translation. They also outperform other state-of-the-art (SOTA) methods for model sparsification. As an example, a 90% non-uniform sparse ResNet-50 model obtained via GaP achieves 77.9% top-1 accuracy on ImageNet, improving the previous SOTA results by 1.5%. Code available at: https://github.com/boone891214/GaP.
MoReL: Multi-omics Relational Learning
Arman Hasanzadeh · Ehsan Hajiramezanali · Nick Duffield · Xiaoning Qian
Multi-omics data analysis has the potential to discover hidden molecular interactions, revealing potential regulatory and/or signal transduction pathways for cellular processes of interest when studying life and disease systems. One of critical challenges when dealing with real-world multi-omics data is that they may manifest heterogeneous structures and data quality as often existing data may be collected from different subjects under different conditions for each type of omics data. We propose a novel deep Bayesian generative model to efficiently infer a multi-partite graph encoding molecular interactions across such heterogeneous views, using a fused Gromov-Wasserstein (FGW) regularization between latent representations of corresponding views for integrative analysis. With such an optimal transport regularization in the deep Bayesian generative model, it not only allows incorporating view-specific side information, either with graph-structured or unstructured data in different views, but also increases the model flexibility with the distribution-based regularization. This allows efficient alignment of heterogeneous latent variable distributions to derive reliable interaction predictions compared to the existing point-based graph embedding methods. Our experiments on several real-world datasets demonstrate enhanced performance of MoReL in inferring meaningful interactions compared to existing baselines.
Generalized Decision Transformer for Offline Hindsight Information Matching
Hiroki Furuta · Yutaka Matsuo · Shixiang Gu
How to extract as much learning signal from each trajectory data has been a key problem in reinforcement learning (RL), where sample inefficiency has posed serious challenges for practical applications. Recent works have shown that using expressive policy function approximators and conditioning on future trajectory information -- such as future states in hindsight experience replay (HER) or returns-to-go in Decision Transformer (DT) -- enables efficient learning of multi-task policies, where at times online RL is fully replaced by offline behavioral cloning (BC), e.g. sequence modeling. We demonstrate that all these approaches are doing hindsight information matching (HIM) -- training policies that can output the rest of trajectory that matches some statistics of future state information. We present Generalized Decision Transformer (GDT) for solving any HIM problem, and show how different choices for the feature function and the anti-causal aggregator not only recover DT as a special case, but also lead to novel Categorical DT (CDT) and Bi-directional DT (BDT) for matching different statistics of the future. For evaluating CDT and BDT, we define offline multi-task state-marginal matching (SMM) and imitation learning (IL) as two generic HIM problems, propose a Wasserstein distance loss as a metric for both, and empirically study them on MuJoCo continuous control benchmarks. Categorical DT, which simply replaces anti-causal summation with anti-causal binning in DT, enables arguably the first effective offline multi-task SMM algorithm that generalizes well to unseen (and even synthetic) multi-modal reward or state-feature distributions. Bi-directional DT, which uses an anti-causal second transformer as the aggregator, can learn to model any statistics of the future and outperforms DT variants in offline multi-task IL, i.e. one-shot IL. Our generalized formulations from HIM and GDT greatly expand the role of powerful sequence modeling architectures in modern RL.
Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke · Gianni De Fabritiis
The prediction of quantum mechanical properties is historically plagued by a trade-off between accuracy and speed. Machine learning potentials have previously shown great success in this domain, reaching increasingly better accuracy while maintaining computational efficiency comparable with classical force fields. In this work we propose TorchMD-NET, a novel equivariant Transformer (ET) architecture, outperforming state-of-the-art on MD17, ANI-1, and many QM9 targets in both accuracy and computational efficiency. Through an extensive attention weight analysis, we gain valuable insights into the black box predictor and show differences in the learned representation of conformers versus conformations sampled from molecular dynamics or normal modes. Furthermore, we highlight the importance of datasets including off-equilibrium conformations for the evaluation of molecular potentials.
We present Path Integral Sampler~(PIS), a novel algorithm to draw samples from unnormalized probability density functions. The PIS is built on the Schr\"odinger bridge problem which aims to recover the most likely evolution of a diffusion process given its initial distribution and terminal distribution. The PIS draws samples from the initial distribution and then propagates the samples through the Schr\"odinger bridge to reach the terminal distribution. Applying the Girsanov theorem, with a simple prior diffusion, we formulate the PIS as a stochastic optimal control problem whose running cost is the control energy and terminal cost is chosen according to the target distribution. By modeling the control as a neural network, we establish a sampling algorithm that can be trained end-to-end. We provide theoretical justification of the sampling quality of PIS in terms of Wasserstein distance when sub-optimal control is used. Moreover, the path integrals theory is used to compute importance weights of the samples to compensate for the bias induced by the sub-optimality of the controller and the time-discretization. We experimentally demonstrate the advantages of PIS compared with other start-of-the-art sampling methods on a variety of tasks.
GNN is a Counter? Revisiting GNN for Question Answering
Kuan Wang · Yuyu Zhang · Diyi Yang · Le Song · Tao Qin
Question Answering (QA) has been a long-standing research topic in AI and NLP fields, and a wealth of studies has been conducted to attempt to equip QA systems with human-level reasoning capability. To approximate the complicated human reasoning process, state-of-the-art QA systems commonly use pre-trained language models (LMs) to access knowledge encoded in LMs together with elaborately designed modules based on Graph Neural Networks (GNNs) to perform reasoning over knowledge graphs (KGs). However, many problems remain open regarding the reasoning functionality of these GNN-based modules. Can these GNN-based modules really perform a complex reasoning process? Are they under- or over-complicated for QA? To open the black box of GNN and investigate these problems, we dissect state-of-the-art GNN modules for QA and analyze their reasoning capability. We discover that even a very simple graph neural counter can outperform all the existing GNN modules on CommonsenseQA and OpenBookQA, two popular QA benchmark datasets which heavily rely on knowledge-aware reasoning. Our work reveals that existing knowledge-aware GNN modules may only carry out some simple reasoning such as counting. It remains a challenging open problem to build comprehensive reasoning modules for knowledge-powered QA.
BiBERT: Accurate Fully Binarized BERT
Haotong Qin · Yifu Ding · Mingyuan Zhang · Qinghua YAN · Aishan Liu · Qingqing Dang · Ziwei Liu · Xianglong Liu
The large pre-trained BERT has achieved remarkable performance on Natural Language Processing (NLP) tasks but is also computation and memory expensive. As one of the powerful compression approaches, binarization extremely reduces the computation and memory consumption by utilizing 1-bit parameters and bitwise operations. Unfortunately, the full binarization of BERT (i.e., 1-bit weight, embedding, and activation) usually suffer a significant performance drop, and there is rare study addressing this problem. In this paper, with the theoretical justification and empirical analysis, we identify that the severe performance drop can be mainly attributed to the information degradation and optimization direction mismatch respectively in the forward and backward propagation, and propose BiBERT, an accurate fully binarized BERT, to eliminate the performance bottlenecks. Specifically, BiBERT introduces an efficient Bi-Attention structure for maximizing representation information statistically and a Direction-Matching Distillation (DMD) scheme to optimize the full binarized BERT accurately. Extensive experiments show that BiBERT outperforms both the straightforward baseline and existing state-of-the-art quantized BERTs with ultra-low bit activations by convincing margins on the NLP benchmark. As the first fully binarized BERT, our method yields impressive 56.3 times and 31.2 times saving on FLOPs and model size, demonstrating the vast advantages and potential of the fully binarized BERT model in real-world resource-constrained scenarios.
Towards Deepening Graph Neural Networks: A GNTK-based Optimization Perspective
Wei Huang · Yayong Li · weitao du · Richard Xu · Jie Yin · Ling Chen · Miao Zhang
Graph convolutional networks (GCNs) and their variants have achieved great success in dealing with graph-structured data. Nevertheless, it is well known that deep GCNs suffer from the over-smoothing problem, where node representations tend to be indistinguishable as more layers are stacked up. The theoretical research to date on deep GCNs has focused primarily on expressive power rather than trainability, an optimization perspective. Compared to expressivity, trainability attempts to address a more fundamental question: Given a sufficiently expressive space of models, can we successfully find a good solution via gradient descent-based optimizers? This work fills this gap by exploiting the Graph Neural Tangent Kernel (GNTK), which governs the optimization trajectory under gradient descent for wide GCNs. We formulate the asymptotic behaviors of GNTK in the large depth, which enables us to reveal the dropping trainability of wide and deep GCNs at an exponential rate in the optimization process. Additionally, we extend our theoretical framework to analyze residual connection-based techniques, which are found to be merely able to mitigate the exponential decay of trainability mildly. Inspired by our theoretical insights on trainability, we propose Critical DropEdge, a connectivity-aware and graph-adaptive sampling method, to alleviate the exponential decay problem more fundamentally. Experimental evaluation consistently confirms using our proposed method can achieve better results compared to relevant counterparts with both infinite-width and finite-width.
Supposing the $n$ training tasks and the new task are sampled from the same environment, traditional meta learning theory derives an error bound on the expected loss over the new task in terms of the empirical training loss, uniformly over the set of all hypothesis spaces. However, there is still little research on how the relatedness of these tasks can affect the full utilization of all $mn$ training data (with $m$ examples per task). In this paper, we propose to address this problem by defining a new notion of task relatedness according to the existence of the bijective transformation between two tasks. A novel generalization bound of $\mathcal{O}(\frac{1}{\sqrt{mn}})$ for meta learning is thus derived by exploiting the proposed task relatedness. Moreover, when investigating a special branch of meta learning that involves representation learning with deep neural networks, we establish spectrally-normalized bounds for both classification and regression problems. Finally, we demonstrate that the relatedness requirement between two tasks is satisfied when the sample space possesses the completeness and separability properties, validating the rationality and applicability of our proposed task-relatedness measure.
Demystifying Batch Normalization in ReLU Networks: Equivalent Convex Optimization Models and Implicit Regularization
Tolga Ergen · Arda Sahiner · Batu Ozturkler · John M Pauly · Morteza Mardani · Mert Pilanci
Batch Normalization (BN) is a commonly used technique to accelerate and stabilize training of deep neural networks. Despite its empirical success, a full theoretical understanding of BN is yet to be developed. In this work, we analyze BN through the lens of convex optimization. We introduce an analytic framework based on convex duality to obtain exact convex representations of weight-decay regularized ReLU networks with BN, which can be trained in polynomial-time. Our analyses also show that optimal layer weights can be obtained as simple closed-form formulas in the high-dimensional and/or overparameterized regimes. Furthermore, we find that Gradient Descent provides an algorithmic bias effect on the standard non-convex BN network, and we design an approach to explicitly encode this implicit regularization into the convex objective. Experiments with CIFAR image classification highlight the effectiveness of this explicit regularization for mimicking and substantially improving the performance of standard BN networks.
Reinforcement Learning with Sparse Rewards using Guidance from Offline Demonstration
Desik Rengarajan · Gargi Vaidya · Akshay Sarvesh · Dileep Kalathil · Srinivas Shakkottai
A major challenge in real-world reinforcement learning (RL) is the sparsity of reward feedback. Often, what is available is an intuitive but sparse reward function that only indicates whether the task is completed partially or fully. However, the lack of carefully designed, fine grain feedback implies that most existing RL algorithms fail to learn an acceptable policy in a reasonable time frame. This is because of the large number of exploration actions that the policy has to perform before it gets any useful feedback that it can learn from. In this work, we address this challenging problem by developing an algorithm that exploits the offline demonstration data generated by {a sub-optimal behavior policy} for faster and efficient online RL in such sparse reward settings. The proposed algorithm, which we call the Learning Online with Guidance Offline (LOGO) algorithm, merges a policy improvement step with an additional policy guidance step by using the offline demonstration data. The key idea is that by obtaining guidance from - not imitating - the offline {data}, LOGO orients its policy in the manner of the sub-optimal {policy}, while yet being able to learn beyond and approach optimality. We provide a theoretical analysis of our algorithm, and provide a lower bound on the performance improvement in each learning episode. We also extend our algorithm to the even more challenging incomplete observation setting, where the demonstration data contains only a censored version of the true state observation. We demonstrate the superior performance of our algorithm over state-of-the-art approaches on a number of benchmark environments with sparse rewards {and censored state}. Further, we demonstrate the value of our approach via implementing LOGO on a mobile robot for trajectory tracking and obstacle avoidance, where it shows excellent performance.
Generative Models as a Data Source for Multiview Representation Learning
Ali Jahanian · Xavier Puig · Yonglong Tian · Phillip Isola
Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival or even outperform those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is available on our project page https://ali-design.github.io/GenRep/.
Focus on the Common Good: Group Distributional Robustness Follows
Vihari Piratla · Praneeth Netrapalli · Sunita Sarawagi
We consider the problem of training a classification model with group annotated training data. Recent work has established that, if there is distribution shift across different groups, models trained using the standard empirical risk minimization (ERM) objective suffer from poor performance on minority groups and that group distributionally robust optimization (Group-DRO) objective is a better alternative. The starting point of this paper is the observation that though Group-DRO performs better than ERM on minority groups for some benchmark datasets, there are several other datasets where it performs much worse than ERM. Inspired by ideas from the closely related problem of domain generalization, this paper proposes a new and simple algorithm that explicitly encourages learning of features that are shared across various groups. The key insight behind our proposed algorithm is that while Group-DRO focuses on groups with worst regularized loss, focusing instead, on groups that enable better performance even on other groups, could lead to learning of shared/common features, thereby enhancing minority performance beyond what is achieved by Group-DRO. Empirically, we show that our proposed algorithm matches or achieves better performance compared to strong contemporary baselines including ERM and Group-DRO on standard benchmarks on both minority groups and across all groups. Theoretically, we show that the proposed algorithm is a descent method and finds first order stationary points of smooth nonconvex functions.
Chaos is a Ladder: A New Theoretical Understanding of Contrastive Learning via Augmentation Overlap
Yifei Wang · Qi Zhang · Yisen Wang · Jiansheng Yang · Zhouchen Lin
Recently, contrastive learning has risen to be a promising approach for large-scale self-supervised learning. However, theoretical understanding of how it works is still unclear. In this paper, we propose a new guarantee on the downstream performance without resorting to the conditional independence assumption that is widely adopted in previous work but hardly holds in practice. Our new theory hinges on the insight that the support of different intra-class samples will become more overlapped under aggressive data augmentations, thus simply aligning the positive samples (augmented views of the same sample) could make contrastive learning cluster intra-class samples together. Based on this augmentation overlap perspective, theoretically, we obtain asymptotically closed bounds for downstream performance under weaker assumptions, and empirically, we propose an unsupervised model selection metric ARC that aligns well with downstream accuracy. Our theory suggests an alternative understanding of contrastive learning: the role of aligning positive samples is more like a surrogate task than an ultimate goal, and the overlapped augmented views (i.e., the chaos) create a ladder for contrastive learning to gradually learn class-separated representations. The code for computing ARC is available at https://github.com/zhangq327/ARC.
Learning Generalizable Representations for Reinforcement Learning via Adaptive Meta-learner of Behavioral Similarities
Jianda Chen · Sinno Pan
How to learn an effective reinforcement learning-based model for control tasks from high-level visual observations is a practical and challenging problem. A key to solving this problem is to learn low-dimensional state representations from observations, from which an effective policy can be learned. In order to boost the learning of state encoding, recent works are focused on capturing behavioral similarities between state representations or applying data augmentation on visual observations. In this paper, we propose a novel meta-learner-based framework for representation learning regarding behavioral similarities for reinforcement learning. Specifically, our framework encodes the high-dimensional observations into two decomposed embeddings regarding reward and dynamics in a Markov Decision Process (MDP). A pair of meta-learners are developed, one of which quantifies the reward similarity and the other quantifies dynamics similarity over the correspondingly decomposed embeddings. The meta-learners are self-learned to update the state embeddings by approximating two disjoint terms in on-policy bisimulation metric. To incorporate the reward and dynamics terms, we further develop a strategy to adaptively balance their impacts based on different tasks or environments. We empirically demonstrate that our proposed framework outperforms state-of-the-art baselines on several benchmarks, including conventional DM Control Suite, Distracting DM Control Suite and a self-driving task CARLA.
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification
Bing Su · Ji-Rong Wen
Explainable distances for sequence data depend on temporal alignment to tackle sequences with different lengths and local variances. Most sequence alignment methods infer the optimal alignment by solving an optimization problem under pre-defined feasible alignment constraints, which not only is time-consuming, but also makes end-to-end sequence learning intractable. In this paper, we propose a learnable sequence distance called Temporal Alignment Prediction (TAP). TAP employs a lightweight convolutional neural network to directly predict the optimal alignment between two sequences, so that only straightforward calculations are required and no optimization is involved in inference. TAP can be applied in different distance-based machine learning tasks. For supervised sequence representation learning, we show that TAP trained with various metric learning losses achieves completive performances with much faster inference speed. For few-shot action classification, we apply TAP as the distance measure in the metric learning-based episode-training paradigm. This simple strategy achieves comparable results with state-of-the-art few-shot action recognition methods.
Emergent Communication at Scale
Rahma Chaabouni · Florian Strub · Florent Altché · Eugene Tarassov · Corentin Tallec · Elnaz Davoodi · Kory Mathewson · Olivier Tieleman · Angeliki Lazaridou · Bilal Piot
Emergent communication aims for a better understanding of human language evolution and building more efficient representations. We posit that reaching these goals will require scaling up, in contrast to a significant amount of literature that focuses on setting up small-scale problems to tease out desired properties of the emergent languages. We focus on three independent aspects to scale up, namely the dataset, task complexity, and population size. We provide a first set of results for large populations solving complex tasks on realistic large-scale datasets, as well as an easy-to-use codebase to enable further experimentation. In more complex tasks and datasets, we find that RL training can become unstable, but responds well to established stabilization techniques.We also identify the need for a different metric than topographic similarity, which does not correlate with the generalization performances when working with natural images. In this context, we probe ease-of-learnability and transfer methods to assess emergent languages. Finally, we observe that larger populations do not induce robust emergent protocols with high generalization performance, leading us to explore different ways to leverage population, through voting and imitation learning.
ConFeSS: A Framework for Single Source Cross-Domain Few-Shot Learning
Debasmit Das · Sungrack Yun · Fatih Porikli
Most current few-shot learning methods train a model from abundantly labeled base category data and then transfer and adapt the model to sparsely labeled novel category data. These methods mostly generalize well on novel categories from the same domain as the base categories but perform poorly for distant domain categories. In this paper, we propose a framework for few-shot learning coined as ConFeSS (Contrastive Learning and Feature Selection System) that tackles large domain shift between base and novel categories. The first step of our framework trains a feature extracting backbone with the contrastive loss on the base category data. Since the contrastive loss does not use supervision, the features can generalize better to distant target domains. For the second step, we train a masking module to select relevant features that are more suited to target domain classification. Finally, a classifier is fine-tuned along with the backbone such that the backbone produces features similar to the relevant ones. To evaluate our framework, we tested it on a recently introduced cross-domain few-shot learning benchmark. Experimental results demonstrate that our framework outperforms all meta-learning approaches and produces competitive results against recent cross-domain methods. Additional analyses are also performed to better understand our framework.
Towards Continual Knowledge Learning of Language Models
Joel Jang · Seonghyeon Ye · Sohee Yang · Joongbo Shin · Janghoon Han · GyeongHun kim · Stanley Jungkyu Choi · Minjoon Seo
Large Language Models (LMs) are known to encode world knowledge in their parameters as they pretrain on a vast amount of web corpus, which is often utilized for performing knowledge-dependent downstream tasks such as question answering, fact-checking, and open dialogue. In real-world scenarios, the world knowledge stored in the LMs can quickly become outdated as the world changes, but it is non-trivial to avoid catastrophic forgetting and reliably acquire new knowledge while preserving invariant knowledge. To push the community towards better maintenance of ever-changing LMs, we formulate a new continual learning (CL) problem called Continual Knowledge Learning (CKL). We construct a new benchmark and metric to quantify the retention of time-invariant world knowledge, the update of outdated knowledge, and the acquisition of new knowledge. We adopt applicable recent methods from literature to create several strong baselines. Through extensive experiments, we find that CKL exhibits unique challenges that are not addressed in previous CL setups, where parameter expansion is necessary to reliably retain and learn knowledge simultaneously. By highlighting the critical causes of knowledge forgetting, we show that CKL is a challenging and important problem that helps us better understand and train ever-changing LMs.
Continual Normalization: Rethinking Batch Normalization for Online Continual Learning
Quang Pham · Chenghao Liu · Steven HOI
Existing continual learning methods use Batch Normalization (BN) to facilitate training and improve generalization across tasks. However, the non-i.i.d and non-stationary nature of continual learning data, especially in the online setting, amplify the discrepancy between training and testing in BN and hinder the performance of older tasks. In this work, we study the cross-task normalization effect of BN in online continual learning where BN normalizes the testing data using moments biased towards the current task, resulting in higher catastrophic forgetting. This limitation motivates us to propose a simple yet effective method that we call Continual Normalization (CN) to facilitate training similar to BN while mitigating its negative effect. Extensive experiments on different continual learning algorithms and online scenarios show that CN is a direct replacement for BN and can provide substantial performance improvements. Our implementation will be made publicly available upon acceptance.
GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation
Minkai Xu · Lantao Yu · Yang Song · Chence Shi · Stefano Ermon · Jian Tang
Predicting molecular conformations from molecular graphs is a fundamental problem in cheminformatics and drug discovery. Recently, significant progress has been achieved with machine learning approaches, especially with deep generative models. Inspired by the diffusion process in classical non-equilibrium thermodynamics where heated particles will diffuse from original states to a noise distribution, in this paper, we propose a novel generative model named GeoDiff for molecular conformation prediction. GeoDiff treats each atom as a particle and learns to directly reverse the diffusion process (i.e., transforming from a noise distribution to stable conformations) as a Markov chain. Modeling such a generation process is however very challenging as the likelihood of conformations should be roto-translational invariant. We theoretically show that Markov chains evolving with equivariant Markov kernels can induce an invariant distribution by design, and further propose building blocks for the Markov kernels to preserve the desirable equivariance property. The whole framework can be efficiently trained in an end-to-end fashion by optimizing a weighted variational lower bound to the (conditional) likelihood. Experiments on multiple benchmarks show that GeoDiff is superior or comparable to existing state-of-the-art approaches, especially on large molecules.
FastSHAP: Real-Time Shapley Value Estimation
Neil Jethani · Mukund Sudarshan · Ian Covert · Su-In Lee · Rajesh Ranganath
Although Shapley values are theoretically appealing for explaining black-box models, they are costly to calculate and thus impractical in settings that involve large, high-dimensional models. To remedy this issue, we introduce FastSHAP, a new method for estimating Shapley values in a single forward pass using a learned explainer model. To enable efficient training without requiring ground truth Shapley values, we develop an approach to train FastSHAP via stochastic gradient descent using a weighted least-squares objective function. In our experiments with tabular and image datasets, we compare FastSHAP to existing estimation approaches and find that it generates accurate explanations with an orders-of-magnitude speedup.
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji · Yiping Lu · Yiliang Zhang · Zhun Deng · Weijie J Su
Neural collapse is a highly symmetric geometry of neural networks that emerges during the terminal phase of training, with profound implications on the generalization performance and robustness of the trained networks. To understand how the last-layer features and classifiers exhibit this recently discovered implicit bias, in this paper, we introduce a surrogate model called the unconstrained layer-peeled model (ULPM). We prove that gradient flow on this model converges to critical points of a minimum-norm separation problem exhibiting neural collapse in its global minimizer. Moreover, we show that the ULPM with the cross-entropy loss has a benign global landscape for its loss function, which allows us to prove that all the critical points are strict saddle points except the global minimizers that exhibit the neural collapse phenomenon. Empirically, we show that our results also hold during the training of neural networks in real-world tasks when explicit regularization or weight decay is not used.
Efficient and Differentiable Conformal Prediction with General Function Classes
Yu Bai · Song Mei · Huan Wang · Yingbo Zhou · Caiming Xiong
Quantifying the data uncertainty in learning tasks is often done by learning a prediction interval or prediction set of the label given the input. Two commonly desired properties for learned prediction sets are \emph{valid coverage} and \emph{good efficiency} (such as low length or low cardinality). Conformal prediction is a powerful technique for learning prediction sets with valid coverage, yet by default its conformalization step only learns a single parameter, and does not optimize the efficiency over more expressive function classes. In this paper, we propose a generalization of conformal prediction to multiple learnable parameters, by considering the constrained empirical risk minimization (ERM) problem of finding the most efficient prediction set subject to valid empirical coverage. This meta-algorithm generalizes existing conformal prediction algorithms, and we show that it achieves approximate valid population coverage and near-optimal efficiency within class, whenever the function class in the conformalization step is low-capacity in a certain sense. Next, this ERM problem is challenging to optimize as it involves a non-differentiable coverage constraint. We develop a gradient-based algorithm for it by approximating the original constrained ERM using differentiable surrogate losses and Lagrangians. Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly over existing approaches in several applications such as prediction intervals with improved length, minimum-volume prediction sets for multi-output regression, and label prediction sets for image classification.
An Information Fusion Approach to Learning with Instance-Dependent Label Noise
Zhimeng Jiang · Kaixiong Zhou · Zirui Liu · Li Li · Rui Chen · Soo-Hyun Choi · Xia Hu
Instance-dependent label noise (IDN) widely exists in real-world datasets and usually misleads the training of deep neural networks. Noise transition matrix (NTM) (i.e., the probability that clean labels flip into noisy labels) is used to characterize the label noise and can be adopted to bridge the gap between clean and noisy underlying data distributions. However, most instances are long-tail, i.e., the number of occurrences of each instance is usually limited, which leads to the gap between the underlying distribution and the empirical distribution. Therefore, the genuine problem caused by IDN is \emph{empirical}, instead of underlying, \emph{data distribution mismatch} during training. To directly tackle the empirical distribution mismatch problem, we propose \emph{posterior transition matrix} (PTM) to posteriorly model label noise given limited observed noisy labels, which achieves \emph{statistically consistent classifiers}. Note that even if an instance is corrupted by the same NTM, the intrinsic randomness incurs different noisy labels, and thus requires different correction methods. Motivated by this observation, we propose an \textbf{I}nformation \textbf{F}usion (IF) approach to fine-tune the NTM based on the estimated PTM. Specifically, we adopt the noisy labels and model predicted probabilities to estimate the PTM and then correct the NTM in \emph{forward propagation}. Empirical evaluations on synthetic and real-world datasets demonstrate that our method is superior to the state-of-the-art approaches, and achieves more stable training for instance-dependent label noise.
Differentiable Gradient Sampling for Learning Implicit 3D Scene Reconstructions from a Single Image
Shizhan Zhu · Sayna Ebrahimi · Angjoo Kanazawa · trevor darrell
Implicit shape models are promising 3D representations for modeling arbitrary locations, with Signed Distance Functions (SDFs) particularly suitable for clear mesh surface reconstruction. Existing approaches for single object reconstruction impose supervision signals based on the loss of the signed distance value from all locations in a scene, posing difficulties when extending to real-world scenarios. The spatial gradient of the signed distance field, rather than the SDF value itself, has not been typically employed as a source of supervision for single-view reconstruction, in part due to the difficulties of differentiable sampling a spatial gradient from the feature map. In this study, we derive a novel closed-form gradient sampling solution for Differentialble Gradient Sampling (DGS) that enables backpropagation of the loss of the spatial gradient back to the feature map pixels, thus allowing the imposition of the loss efficiently on the spatial gradient. As a result, we achieve high-quality single view indoor scene reconstruction results learning directly from a real-world scanned dataset (e.g. ScannetV2). Our model also performs well when generalizing to unseen images downloaded directly from the internet (Fig. 1). We comfortably advanced the state-of-the-art results with several established datasets including ShapeNet and ScannetV2; extensive quantitative analysis confirmed that our proposed DGS module plays an essential role in achieving this performance improvement. Full codes are available in MaskedURL.
Zero-CL: Instance and Feature decorrelation for negative-free symmetric contrastive learning
Shaofeng Zhang · Feng Zhu · Junchi Yan · Rui Zhao · Xiaokang Yang
For self-supervised contrastive learning, models can easily collapse and generate trivial constant solutions. The issue has been mitigated by recent improvement on objective design, which however often requires square complexity either for the size of instances ($\mathcal{O}(N^{2})$) or feature dimensions ($\mathcal{O}(d)^2$). To prevent such collapse, we develop two novel methods by decorrelating on different dimensions on the instance embedding stacking matrix, i.e., \textbf{I}nstance-wise (ICL) and \textbf{F}eature-wise (FCL) \textbf{C}ontrastive \textbf{L}earning. The proposed two methods (FCL, ICL) can be combined synthetically, called Zero-CL, where ``Zero'' means negative samples are \textbf{zero} relevant, which allows Zero-CL to completely discard negative pairs i.e., with \textbf{zero} negative samples. Compared with previous methods, Zero-CL mainly enjoys three advantages: 1) Negative free in symmetric architecture. 2) By whitening transformation, the correlation of the different features is equal to zero, alleviating information redundancy. 3) Zero-CL remains original information to a great extent after transformation, which improves the accuracy against other whitening transformation techniques. Extensive experimental results on CIFAR-10/100 and ImageNet show that Zero-CL outperforms or is on par with state-of-the-art symmetric contrastive learning methods.
We study the problem of learning verifiably safe parameters for programs that use neural networks as well as symbolic, human-written code. Such neurosymbolic programs arise in many safety-critical domains. However, because they need not be differentiable, it is hard to learn their parameters using existing gradient-based approaches to safe learning. Our method, Differentiable Symbolic Execution (DSE), samples control flow paths in a program, symbolically constructs worst-case "safety loss" along these paths, and backpropagates the gradients of these losses through program operations using a generalization of the REINFORCE estimator. We evaluate the method on a mix of synthetic tasks and real-world benchmarks. Our experiments show that DSE significantly outperforms the state-of-the-art DiffAI method on these tasks.
Ancestral protein sequence reconstruction using a tree-structured Ornstein-Uhlenbeck variational autoencoder
Lys Sanz Moreta · Ola Rønning · Ahmad Salim Al-Sibahi · Jotun Hein · Douglas Theobald · Thomas Hamelryck
We introduce a deep generative model for representation learning of biological sequences that, unlike existing models, explicitly represents the evolutionary process. The model makes use of a tree-structured Ornstein-Uhlenbeck process, obtained from a given phylogenetic tree, as an informative prior for a variational autoencoder. We show the model performs well on the task of ancestral sequence reconstruction of single protein families. Our results and ablation studies indicate that the explicit representation of evolution using a suitable tree-structured prior has the potential to improve representation learning of biological sequences considerably. Finally, we briefly discuss extensions of the model to genomic-scale data sets and the case of a latent phylogenetic tree.
Rethinking Adversarial Transferability from a Data Distribution Perspective
Yao Zhu · Jiacheng Sun · Zhenguo Li
Adversarial transferability enables attackers to generate adversarial examples from the source model to attack the target model, which has raised security concerns about the deployment of DNNs in practice. In this paper, we rethink adversarial transferability from a data distribution perspective and further enhance transferability by score matching based optimization. We identify that some samples with injecting small Gaussian noise can fool different target models, and their adversarial examples under different source models have much stronger transferability. We hypothesize that these samples are in the low-density region of the ground truth distribution where models are not well trained. To improve the attack success rate of adversarial examples, we match the adversarial attacks with the directions which effectively decrease the ground truth density. We propose Intrinsic Adversarial Attack (IAA), which smooths the activation function and decreases the impact of the later layers of a given normal model, to increase the alignment of adversarial attack and the gradient of joint data distribution. We conduct comprehensive transferable attacks against multiple DNNs and show that our IAA can boost the transferability of the crafted attacks in all cases and go beyond state-of-the-art methods.
Retriever: Learning Content-Style Representation as a Token-Level Bipartite Graph
Dacheng Yin · Xuanchi Ren · Chong Luo · Yuwang Wang · Zhiwei Xiong · Wenjun Zeng
This paper addresses the unsupervised learning of content-style decomposed representation. We first give a definition of style and then model the content-style representation as a token-level bipartite graph. An unsupervised framework, named Retriever, is proposed to learn such representations. First, a cross-attention module is employed to retrieve permutation invariant (P.I.) information, defined as style, from the input data. Second, a vector quantization (VQ) module is used, together with man-induced constraints, to produce interpretable content tokens. Last, an innovative link attention module serves as the decoder to reconstruct data from the decomposed content and style, with the help of the linking keys. Being modal-agnostic, the proposed Retriever is evaluated in both speech and image domains. The state-of-the-art zero-shot voice conversion performance confirms the disentangling ability of our framework. Top performance is also achieved in the part discovery task for images, verifying the interpretability of our representation. In addition, the vivid part-based style transfer quality demonstrates the potential of Retriever to support various fascinating generative tasks. Project page at https://ydcustc.github.io/retriever-demo/.
GraphENS: Neighbor-Aware Ego Network Synthesis for Class-Imbalanced Node Classification
Joonhyung Park · Jaeyun Song · Eunho Yang
In many real-world node classification scenarios, nodes are highly class-imbalanced, where graph neural networks (GNNs) can be readily biased to major class instances. Albeit existing class imbalance approaches in other domains can alleviate this issue to some extent, they do not consider the impact of message passing between nodes. In this paper, we hypothesize that overfitting to the neighbor sets of minor class due to message passing is a major challenge for class-imbalanced node classification. To tackle this issue, we propose GraphENS, a novel augmentation method that synthesizes the whole ego network for minor class (minor node and its one-hop neighbors) by combining two different ego networks based on their similarity. Additionally, we introduce a saliency-based node mixing method to exploit the abundant class-generic attributes of other nodes while blocking the injection of class-specific features. Our approach consistently outperforms the baselines over multiple node classification benchmark datasets and architectures.
Fast Generic Interaction Detection for Model Interpretability and Compression
Tianjian Zhang · Feng Yin · Zhi-Quan Luo
The ability of discovering feature interactions in a black-box model is vital to explainable deep learning. We propose a principled, global interaction detection method by casting our target as a multi-arm bandits problem and solving it swiftly with the UCB algorithm. This adaptive method is free of ad-hoc assumptions and among the cutting-edge methods with outstanding detection accuracy and stability. Based on the detection outcome, a lightweight and interpretable deep learning model (called ParaACE) is further built using the alternating conditional expectation (ACE) method. Our proposed ParaACE improves the prediction performance by 26 % and reduces the model size by 100+ times as compared to its Teacher model over various datasets. Furthermore, we show the great potential of our method for scientific discovery through interpreting various real datasets in the economics and smart medicine sectors. The code is available at https://github.com/zhangtj1996/ParaACE.
Compositional Training for End-to-End Deep AUC Maximization
Zhuoning Yuan · Zhishuai Guo · Nitesh Chawla · Tianbao Yang
Recently, deep AUC maximization (DAM) has achieved great success in different domains (e.g., medical image classification). However, the end-to-end training for deep AUC maximization still remains a challenging problem. Previous studies employ an ad-hoc two-stage approach that first trains the network by optimizing a traditional loss (e.g., cross-entropy loss) and then finetunes the network by optimizing an AUC loss. This is because that training a deep neural network from scratch by maximizing an AUC loss usually does not yield a satisfactory performance. This phenomenon can be attributed to the degraded feature representations learned by maximizing the AUC loss from scratch. To address this issue, we propose a novel compositional training framework for end-to-end DAM, namely compositional DAM. The key idea of compositional training is to minimize a compositional objective function, where the outer function corresponds to an AUC loss and the inner function represents a gradient descent step for minimizing a traditional loss, e.g., the cross-entropy (CE) loss. To optimize the non-standard compositional objective, we propose an efficient and provable stochastic optimization algorithm. The proposed algorithm enhances the capabilities of both robust feature learning and robust classifier learning by alternatively taking a gradient descent step for the CE loss and for the AUC loss in a systematic way. We conduct extensive empirical studies on imbalanced benchmark and medical image datasets, which unanimously verify the effectiveness of the proposed method. Our results show that the compositional training approach dramatically improves both the feature representations and the testing AUC score compared with traditional deep learning approaches, and yields better performance than the two-stage approaches for DAM as well. The proposed method is implemented in our open-sourced library LibAUC (https://www.libauc.org) and code is available at https://github.com/Optimization-AI/LibAUC.
Representational Continuity for Unsupervised Continual Learning
Divyam Madaan · Jaehong Yoon · Yuanchun Li · Yunxin Liu · Sung Ju Hwang
Continual learning (CL) aims to learn a sequence of tasks without forgetting the previously acquired knowledge. However, recent CL advances are restricted to supervised continual learning (SCL) scenarios. Consequently, they are not scalable to real-world applications where the data distribution is often biased and unannotated. In this work, we focus on unsupervised continual learning (UCL), where we learn the feature representations on an unlabelled sequence of tasks and show that reliance on annotated data is not necessary for continual learning. We conduct a systematic study analyzing the learned feature representations and show that unsupervised visual representations are surprisingly more robust to catastrophic forgetting, consistently achieve better performance, and generalize better to out-of-distribution tasks than SCL. Furthermore, we find that UCL achieves a smoother loss landscape through qualitative analysis of the learned representations and learns meaningful feature representations. Additionally, we propose Lifelong Unsupervised Mixup (Lump), a simple yet effective technique that interpolates between the current task and previous tasks' instances to alleviate catastrophic forgetting for unsupervised representations.
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan · Warren Morningstar · Lin Ning · Karan Singhal
Federated learning data is drawn from a distribution of distributions: clients are drawn from a meta-distribution, and their data are drawn from local data distributions. Generalization studies in federated learning should separate performance gaps from unseen client data (out-of-sample gap) from performance gaps from unseen client distributions (participation gap). In this work, we propose a framework for disentangling these performance gaps. Using this framework, we observe and explain differences in behavior across natural and synthetic federated datasets, indicating that dataset synthesis strategy can be important for realistic simulations of generalization in federated learning. We propose a semantic synthesis strategy that enables realistic simulation without naturally partitioned data. Informed by our findings, we call out community suggestions for future federated learning works.
Self-Supervision Enhanced Feature Selection with Correlated Gates
Changhee Lee · Fergus Imrie · Mihaela van der Schaar
Discovering relevant input features for predicting a target variable is a key scientific question. However, in many domains, such as medicine and biology, feature selection is confounded by a scarcity of labeled samples coupled with significant correlations among features. In this paper, we propose a novel deep learning approach to feature selection that addresses both challenges simultaneously. First, we pre-train the network using unlabeled samples within a self-supervised learning framework by solving pretext tasks that require the network to learn informative representations from partial feature sets. Then, we fine-tune the pre-trained network to discover relevant features using labeled samples. During both training phases, we explicitly account for the correlation structure of the input features by generating correlated gate vectors from a multivariate Bernoulli distribution. Experiments on multiple real-world datasets including clinical and omics demonstrate that our model discovers relevant features that provide superior prediction performance compared to the state-of-the-art benchmarks in practical scenarios where there is often limited labeled data and high correlations among features.
Iterative Refinement Graph Neural Network for Antibody Sequence-Structure Co-design
Wengong Jin · Jeremy Wohlwend · Regina Barzilay · Tommi Jaakkola
Antibodies are versatile proteins that bind to pathogens like viruses and stimulate the adaptive immune system. The specificity of antibody binding is determined by complementarity-determining regions (CDRs) at the tips of these Y-shaped proteins. In this paper, we propose a generative model to automatically design the CDRs of antibodies with enhanced binding specificity or neutralization capabilities. Previous generative approaches formulate protein design as a structure-conditioned sequence generation task, assuming the desired 3D structure is given a priori. In contrast, we propose to co-design the sequence and 3D structure of CDRs as graphs. Our model unravels a sequence autoregressively while iteratively refining its predicted global structure. The inferred structure in turn guides subsequent residue choices. For efficiency, we model the conditional dependence between residues inside and outside of a CDR in a coarse-grained manner. Our method achieves superior log-likelihood on the test set and outperforms previous baselines in designing antibodies capable of neutralizing the SARS-CoV-2 virus.
Surreal-GAN:Semi-Supervised Representation Learning via GAN for uncovering heterogeneous disease-related imaging patterns
Zhijian Yang · Junhao Wen · Christos Davatzikos
A plethora of machine learning methods have been applied to imaging data, enabling the construction of clinically relevant imaging signatures of neurological and neuropsychiatric diseases. Oftentimes, such methods don't explicitly model the heterogeneity of disease effects, or approach it via nonlinear models that are not interpretable. Moreover, unsupervised methods may parse heterogeneity that is driven by nuisance confounding factors that affect brain structure or function, rather than heterogeneity relevant to a pathology of interest. On the other hand, semi-supervised clustering methods seek to derive a dichotomous subtype membership, ignoring the truth that disease heterogeneity spatially and temporally extends along a continuum. To address the aforementioned limitations, herein, we propose a novel method, termed Surreal-GAN (Semi-SUpeRvised ReprEsentAtion Learning via GAN). Using cross-sectional imaging data, Surreal-GAN dissects underlying disease-related heterogeneity under the principle of semi-supervised clustering (cluster mappings from normal control to patient), proposes a continuously dimensional representation, and infers the disease severity of patients at individual level along each dimension. The model first learns a transformation function from normal control (CN) domain to the patient (PT) domain with latent variables controlling transformation directions. An inverse mapping function together with regularization on function continuity, pattern orthogonality and monotonicity was also imposed to make sure that the transformation function captures necessarily meaningful imaging patterns with clinical significance. We first validated the model through extensive semi-synthetic experiments, and then demonstrate its potential in capturing biologically plausible imaging patterns in Alzheimer's disease (AD).
GreaseLM: Graph REASoning Enhanced Language Models
Xikun Zhang · Antoine Bosselut · Michihiro Yasunaga · Hongyu Ren · Percy Liang · Christopher Manning · Jure Leskovec
Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
Objects in Semantic Topology
Shuo Yang · Peize Sun · Yi Jiang · Xiaobo Xia · Ruiheng Zhang · Zehuan Yuan · Changhu Wang · Ping Luo · Min Xu
A more realistic object detection paradigm, Open-World Object Detection, has arised increasing research interests in the community recently. A qualified open-world object detector can not only identify objects of known categories, but also discover unknown objects, and incrementally learn to categorize them when their annotations progressively arrive. Previous works rely on independent modules to recognize unknown categories and perform incremental learning, respectively. In this paper, we provide a unified perspective: Semantic Topology. During the life-long learning of an open-world object detector, all object instances from the same category are assigned to their corresponding pre-defined node in the semantic topology, including the `unknown' category. This constraint builds up discriminative feature representations and consistent relationships among objects, thus enabling the detector to distinguish unknown objects out of the known categories, as well as making learned features of known objects undistorted when learning new categories incrementally. Extensive experiments demonstrate that semantic topology, either randomly-generated or derived from a well-trained language model, could outperform the current state-of-the-art open-world object detectors by a large margin, e.g., the absolute open-set error (the number of unknown instances that are wrongly labeled as known) is reduced from 7832 to 2546, exhibiting the inherent superiority of semantic topology on open-world object detection.
Learning Disentangled Representation by Exploiting Pretrained Generative Models: A Contrastive Learning View
Xuanchi Ren · Tao Yang · Yuwang Wang · Wenjun Zeng
From the intuitive notion of disentanglement, the image variations corresponding to different generative factors should be distinct from each other, and the disentangled representation should reflect those variations with separate dimensions. To discover the generative factors and learn disentangled representation, previous methods typically leverage an extra regularization term when learning to generate realistic images. However, the term usually results in a trade-off between disentanglement and generation quality. For the generative models pretrained without any disentanglement term, the generated images show semantically meaningful variations when traversing along different directions in the latent space. Based on this observation, we argue that it is possible to mitigate the trade-off by (i) leveraging the pretrained generative models with high generation quality, (ii) focusing on discovering the traversal directions as generative factors for disentangled representation learning. To achieve this, we propose Disentaglement via Contrast (DisCo) as a framework to model the variations based on the target disentangled representations, and contrast the variations to jointly discover disentangled directions and learn disentangled representations. DisCo achieves the state-of-the-art disentangled representation learning and distinct direction discovering, given pretrained non-disentangled generative models including GAN, VAE, and Flow. Source code is at https://github.com/xrenaa/DisCo.
A Relational Intervention Approach for Unsupervised Dynamics Generalization in Model-Based Reinforcement Learning
Jiaxian Guo · Mingming Gong · Dacheng Tao
The generalization of model-based reinforcement learning (MBRL) methods to environments with unseen transition dynamics is an important yet challenging problem.Existing methods try to extract environment-specified information $Z$ from past transition segments to make the dynamics prediction model generalizable to different dynamics. However, because environments are not labelled, the extracted information inevitably contains redundant information unrelated to the dynamics in transition segments and thus fails to maintain a crucial property of $Z$: $Z$ should be similar in the same environment and dissimilar in different ones. As a result, the learned dynamics prediction function will deviate from the true one, which undermines the generalization ability. To tackle this problem, we introduce an interventional prediction module to estimate the probability of two estimated $\hat{z}_i, \hat{z}_j$ belonging to the same environment.Furthermore, by utilizing the $Z$'s invariance within a single environment, a relational head is proposed to enforce the similarity between $\hat{{Z}}$ from the same environment. As a result, the redundant information will be reduced in $\hat{Z}$. We empirically show that $\hat{{Z}}$ estimated by our method enjoy less redundant information than previous methods, and such $\hat{{Z}}$ can significantly reduce dynamics prediction errors and improve the performance of model-based RL methods on zero-shot new environments with unseen dynamics. The codes of this method are available at \url{https://github.com/CR-Gjx/RIA}.
ViDT: An Efficient and Effective Fully Transformer-based Object Detector
Hwanjun Song · Deqing Sun · Sanghyuk Chun · Varun Jampani · Dongyoon Han · Byeongho Heo · Wonjae Kim · Ming-Hsuan Yang
Transformers are transforming the landscape of computer vision, especially for recognition tasks. Detection transformers are the first fully end-to-end learning systems for object detection, while vision transformers are the first fully transformer-based architecture for image classification. In this paper, we integrate Vision and Detection Transformers (ViDT) to build an effective and efficient object detector. ViDT introduces a reconfigured attention module to extend the recent Swin Transformer to be a standalone object detector, followed by a computationally efficient transformer decoder that exploits multi-scale features and auxiliary techniques essential to boost the detection performance without much increase in computational load. Extensive evaluation results on the Microsoft COCO benchmark dataset demonstrate that ViDT obtains the best AP and latency trade-off among existing fully transformer-based object detectors, and achieves 49.2AP owing to its high scalability for large models. We release the code and trained models at https://github.com/naver-ai/vidt.
Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of GANs
Jaewoong Choi · Junho Lee · Changyeon Yoon · Jung Ho Park · Geonho Hwang · Myungjoo Kang
The discovery of the disentanglement properties of the latent space in GANs motivated a lot of research to find the semantically meaningful directions on it. In this paper, we suggest that the disentanglement property is closely related to the geometry of the latent space. In this regard, we propose an unsupervised method for finding the semantic-factorizing directions on the intermediate latent space of GANs based on the local geometry. Intuitively, our proposed method, called $\textit{Local Basis}$, finds the principal variation of the latent space in the neighborhood of the base latent variable. Experimental results show that the local principal variation corresponds to the semantic factorization and traversing along it provides strong robustness to image traversal. Moreover, we suggest an explanation for the limited success in finding the global traversal directions in the latent space, especially $\mathcal{W}$-space of StyleGAN2. We show that $\mathcal{W}$-space is warped globally by comparing the local geometry, discovered from Local Basis, through the metric on Grassmannian Manifold. The global warpage implies that the latent space is not well-aligned globally and therefore the global traversal directions are bound to show limited success on it.
Understanding the Role of Self Attention for Efficient Speech Recognition
Kyuhong Shim · Jungwook Choi · Wonyong Sung
Self-attention (SA) is a critical component of Transformer neural networks that have succeeded in automatic speech recognition (ASR). In this paper, we analyze the role of SA in Transformer-based ASR models for not only understanding the mechanism of improved recognition accuracy but also lowering the computational complexity. We reveal that SA performs two distinct roles: phonetic and linguistic localization. Especially, we show by experiments that phonetic localization in the lower layers extracts phonologically meaningful features from speech and reduces the phonetic variance in the utterance for proper linguistic localization in the upper layers. From this understanding, we discover that attention maps can be reused as long as their localization capability is preserved. To evaluate this idea, we implement the layer-wise attention map reuse on real GPU platforms and achieve up to 1.96 times speedup in inference and 33% savings in training time with noticeably improved ASR performance for the challenging benchmark on LibriSpeech dev/test-other dataset.
Towards Evaluating the Robustness of Neural Networks Learned by Transduction
Jiefeng Chen · Xi Wu · Yang Guo · Yingyu Liang · Somesh Jha
There has been emerging interest in using transductive learning for adversarial robustness (Goldwasser et al., NeurIPS 2020; Wu et al., ICML 2020; Wang et al., ArXiv 2021). Compared to traditional defenses, these defense mechanisms "dynamically learn" the model based on test-time input; and theoretically, attacking these defenses reduces to solving a bilevel optimization problem, which poses difficulty in crafting adaptive attacks. In this paper, we examine these defense mechanisms from a principled threat analysis perspective. We formulate and analyze threat models for transductive-learning based defenses, and point out important subtleties. We propose the principle of attacking model space for solving bilevel attack objectives, and present Greedy Model Space Attack (GMSA), an attack framework that can serve as a new baseline for evaluating transductive-learning based defenses. Through systematic evaluation, we show that GMSA, even with weak instantiations, can break previous transductive-learning based defenses, which were resilient to previous attacks, such as AutoAttack (Croce and Hein, ICML 2020). On the positive side, we report a somewhat surprising empirical result of "transductive adversarial training": Adversarially retraining the model using fresh randomness at the test time gives a significant increase in robustness against attacks we consider.
Online Coreset Selection for Rehearsal-based Continual Learning
Jaehong Yoon · Divyam Madaan · Eunho Yang · Sung Ju Hwang
A dataset is a shred of crucial evidence to describe a task. However, each data point in the dataset does not have the same potential, as some of the data points can be more representative or informative than others. This unequal importance among the data points may have a large impact in rehearsal-based continual learning, where we store a subset of the training examples (coreset) to be replayed later to alleviate catastrophic forgetting. In continual learning, the quality of the samples stored in the coreset directly affects the model's effectiveness and efficiency. The coreset selection problem becomes even more important under realistic settings, such as imbalanced continual learning or noisy data scenarios. To tackle this problem, we propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration and trains them in an online manner. Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting. We validate the effectiveness of our coreset selection mechanism over various standard, imbalanced, and noisy datasets against strong continual learning baselines, demonstrating that it improves task adaptation and prevents catastrophic forgetting in a sample-efficient manner.
On Evaluation Metrics for Graph Generative Models
Rylee Thompson · Boris Knyazev · Elahe Ghalebi · Jungtaek Kim · Graham W Taylor
In image generation, generative models can be evaluated naturally by visually inspecting model outputs. However, this is not always the case for graph generative models (GGMs), making their evaluation challenging. Currently, the standard process for evaluating GGMs suffers from three critical limitations: i) it does not produce a single score which makes model selection challenging, ii) in many cases it fails to consider underlying edge and node features, and iii) it is prohibitively slow to perform. In this work, we mitigate these issues by searching for \emph{scalar, domain-agnostic, and scalable metrics} for evaluating and ranking GGMs. To this end, we study existing GGM metrics and neural-network-based metrics emerging from generative models of images that use embeddings extracted from a task-specific network. Motivated by the power of Graph Neural Networks (GNNs) to extract meaningful graph representations \emph{without any training}, we introduce several metrics based on the features extracted by an untrained random GNN. We design experiments to thoroughly test and objectively score metrics on their ability to measure the diversity and fidelity of generated graphs, as well as their sample and computational efficiency. Depending on the quantity of samples, we recommend one of two metrics from our collection of random-GNN-based metrics. We show these two metrics to be more expressive than pre-existing and alternative random-GNN-based metrics using our objective scoring. While we focus on applying these metrics to GGM evaluation, in practice this enables the ability to easily compute the dissimilarity between any two sets of graphs \emph{regardless of domain}. Our code is released at: https://github.com/uoguelph-mlrg/GGM-metrics.
ViTGAN: Training GANs with Vision Transformers
Kwonjoon Lee · Huiwen Chang · Lu Jiang · Han Zhang · Zhuowen Tu · Ce Liu
Recently, Vision Transformers (ViTs) have shown competitive performance on image recognition while requiring less vision-specific inductive biases. In this paper, we investigate if such performance can be extended to image generation. To this end, we integrate the ViT architecture into generative adversarial networks (GANs). For ViT discriminators, we observe that existing regularization methods for GANs interact poorly with self-attention, causing serious instability during training. To resolve this issue, we introduce several novel regularization techniques for training GANs with ViTs. For ViT generators, we examine architectural choices for latent and pixel mapping layers to faciliate convergence. Empirically, our approach, named ViTGAN, achieves comparable performance to the leading CNN- based GAN models on three datasets: CIFAR-10, CelebA, and LSUN bedroom.
Meta Discovery: Learning to Discover Novel Classes given Very Limited Data
Haoang Chi · Feng Liu · Wenjing Yang · Long Lan · Tongliang Liu · Bo Han · Gang Niu · Mingyuan Zhou · Masashi Sugiyama
In novel class discovery (NCD), we are given labeled data from seen classes and unlabeled data from unseen classes, and we train clustering models for the unseen classes. However, the implicit assumptions behind NCD are still unclear. In this paper, we demystify assumptions behind NCD and find that high-level semantic features should be shared among the seen and unseen classes. Based on this finding, NCD is theoretically solvable under certain assumptions and can be naturally linked to meta-learning that has exactly the same assumption as NCD. Thus, we can empirically solve the NCD problem by meta-learning algorithms after slight modifications. This meta-learning-based methodology significantly reduces the amount of unlabeled data needed for training and makes it more practical, as demonstrated in experiments. The use of very limited data is also justified by the application scenario of NCD: since it is unnatural to label only seen-class data, NCD is sampling instead of labeling in causality. Therefore, unseen-class data should be collected on the way of collecting seen-class data, which is why they are novel and first need to be clustered.
Neural Models for Output-Space Invariance in Combinatorial Problems
Yatin Nandwani · Vidit Jain · Mausam . · Parag Singla
Recently many neural models have been proposed to solve combinatorial puzzles by implicitly learning underlying constraints using their solved instances, such as sudoku or graph coloring (GCP). One drawback of the proposed architectures, which are often based on Graph Neural Networks (GNN) (Zhou et al., 2020), is that they cannot generalize across the size of the output space from which variables are assigned a value, for example, set of colors in a GCP, or board-size in sudoku. We call the output space for the variables as ‘value-set’. While many works have demonstrated generalization of GNNs across graph size, there has been no study on how to design a GNN for achieving value-set invariance for problems that come from the same domain. For example, learning to solve 16 x 16 sudoku after being trained on only 9 x 9 sudokus, or coloring a 7 colorable graph after training on 4 colorable graphs. In this work, we propose novel methods to extend GNN based architectures to achieve value-set invariance. Specifically, our model builds on recently proposed Recurrent Relational Networks (RRN) (Palm et al., 2018). Our first approach exploits the graph-size invariance of GNNs by converting a multi-class node classification problem into a binary node classification problem. Our second approach works directly with multiple classes by adding multiple nodes corresponding to the values in the value-set, and then connecting variable nodes to value nodes depending on the problem initialization. Our experimental evaluation on three different combinatorial problems demonstrates that both our models perform well on our novel problem, compared to a generic neural reasoner. Between two of our models, we observe an inherent trade-off: while the binarized model gives better performance when trained on smaller value-sets, multi-valued model is much more memory efficient, resulting in improved performance when trained on larger value-sets, where binarized model fails to train.
Variational oracle guiding for reinforcement learning
Dongqi Han · Tadashi Kozuno · Xufang Luo · Zhao-Yun Chen · Kenji Doya · Yuqing Yang · Dongsheng Li
How to make intelligent decisions is a central problem in machine learning and artificial intelligence. Despite recent successes of deep reinforcement learning (RL) in various decision making problems, an important but under-explored aspect is how to leverage oracle observation (the information that is invisible during online decision making, but is available during offline training) to facilitate learning. For example, human experts will look at the replay after a Poker game, in which they can check the opponents' hands to improve their estimation of the opponents' hands from the visible information during playing. In this work, we study such problems based on Bayesian theory and derive an objective to leverage oracle observation in RL using variational methods. Our key contribution is to propose a general learning framework referred to as variational latent oracle guiding (VLOG) for DRL. VLOG is featured with preferable properties such as its robust and promising performance and its versatility to incorporate with any value-based DRL algorithm. We empirically demonstrate the effectiveness of VLOG in online and offline RL domains with tasks ranging from video games to a challenging tile-based game Mahjong. Furthermore, we publish the Mahjong environment and an offline RL dataset as a benchmark to facilitate future research on oracle guiding (https://github.com/Agony5757/mahjong).
VAT-Mart: Learning Visual Action Trajectory Proposals for Manipulating 3D ARTiculated Objects
Ruihai Wu · Yan Zhao · Kaichun Mo · Zizheng Guo · Yian Wang · Tianhao Wu · Qingnan Fan · Xuelin Chen · Leonidas Guibas · Hao Dong
Perceiving and manipulating 3D articulated objects (e.g., cabinets, doors) in human environments is an important yet challenging task for future home-assistant robots. The space of 3D articulated objects is exceptionally rich in their myriad semantic categories, diverse shape geometry, and complicated part functionality. Previous works mostly abstract kinematic structure with estimated joint parameters and part poses as the visual representations for manipulating 3D articulated objects. In this paper, we propose object-centric actionable visual priors as a novel perception-interaction handshaking point that the perception system outputs more actionable guidance than kinematic structure estimation, by predicting dense geometry-aware, interaction-aware, and task-aware visual action affordance and trajectory proposals. We design an interaction-for-perception framework VAT-Mart to learn such actionable visual representations by simultaneously training a curiosity-driven reinforcement learning policy exploring diverse interaction trajectories and a perception module summarizing and generalizing the explored knowledge for pointwise predictions among diverse shapes. Experiments prove the effectiveness of the proposed approach using the large-scale PartNet-Mobility dataset in SAPIEN environment and show promising generalization capabilities to novel test shapes, unseen object categories, and real-world data.
Automated Self-Supervised Learning for Graphs
Wei Jin · Xiaorui Liu · Xiangyu Zhao · Yao Ma · Neil Shah · Jiliang Tang
Graph self-supervised learning has gained increasing attention due to its capacity to learn expressive node representations. Many pretext tasks, or loss functions have been designed from distinct perspectives. However, we observe that different pretext tasks affect downstream tasks differently cross datasets, which suggests that searching pretext tasks is crucial for graph self-supervised learning. Different from existing works focusing on designing single pretext tasks, this work aims to investigate how to automatically leverage multiple pretext tasks effectively. Nevertheless, evaluating representations derived from multiple pretext tasks without direct access to ground truth labels makes this problem challenging. To address this obstacle, we make use of a key principle of many real-world graphs, i.e., homophily, or the principle that ``like attracts like,'' as the guidance to effectively search various self-supervised pretext tasks. We provide theoretical understanding and empirical evidence to justify the flexibility of homophily in this search task. Then we propose the AutoSSL framework which can automatically search over combinations of various self-supervised tasks. By evaluating the framework on 7 real-world datasets, our experimental results show that AutoSSL can significantly boost the performance on downstream tasks including node clustering and node classification compared with training under individual tasks.
UniFormer: Unified Transformer for Efficient Spatial-Temporal Representation Learning
Kunchang Li · Yali Wang · Gao Peng · Guanglu Song · Yu Liu · Hongsheng Li · Yu Qiao
It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to large local redundancy and complex global dependency between video frames. The recent advances in this research have been mainly driven by 3D convolutional neural networks and vision transformers. Although 3D convolution can efficiently aggregate local context to suppress local redundancy from a small 3D neighborhood, it lacks the capability to capture global dependency because of the limited receptive field. Alternatively, vision transformers can effectively capture long-range dependency by self-attention mechanism, while having the limitation on reducing local redundancy with blind similarity comparison among all the tokens in each layer. Based on these observations, we propose a novel Unified transFormer (UniFormer) which seamlessly integrates merits of 3D convolution and spatiotemporal self-attention in a concise transformer format, and achieves a preferable balance between computation and accuracy. Different from traditional transformers, our relation aggregator can tackle both spatiotemporal redundancy and dependency, by learning local and global token affinity respectively in shallow and deep layers. We conduct extensive experiments on the popular video benchmarks, e.g., Kinetics-400, Kinetics-600, and Something-Something V1&V2. With only ImageNet-1K pretraining, our UniFormer achieves 82.9%/84.8% top-1 accuracy on Kinetics-400/Kinetics-600, while requiring 10x fewer GFLOPs than other state-of-the-art methods. For Something-Something V1 and V2, our UniFormer achieves new state-of-the-art performances of 60.9% and 71.2% top-1 accuracy respectively. Code is available at https://github.com/Sense-X/UniFormer.
Target-Side Input Augmentation for Sequence to Sequence Generation
Shufang Xie · Ang Lv · Yingce Xia · Lijun Wu · Tao Qin · Tie-Yan Liu · Rui Yan
Autoregressive sequence generation, a prevalent task in machine learning and natural language processing, generates every target token conditioned on both a source input and previously generated target tokens. Previous data augmentation methods, which have been shown to be effective for the task, mainly enhance source inputs (e.g., injecting noise into the source sequence by random swapping or masking, back translation, etc.) while overlooking the target-side augmentation. In this work, we propose a target-side augmentation method for sequence generation. In training, we use the decoder output probability distributions as soft indicators, which are multiplied with target token embeddings, to build pseudo tokens. These soft pseudo tokens are then used as target tokens to enhance the training. We conduct comprehensive experiments on various sequence generation tasks, including dialog generation, machine translation, and abstractive summarization. Without using any extra labeled data or introducing additional model parameters, our method significantly outperforms strong baselines. The code is available at https://github.com/TARGET-SIDE-DATA-AUG/TSDASG.
Language modeling via stochastic processes
Rose Wang · Esin Durmus · Noah Goodman · Tatsunori Hashimoto
Modern language models can generate high-quality short texts. However, they often meander or are incoherent when generating longer texts. These issues arise from the next-token-only language modeling objective. To address these issues, we introduce Time Control (TC), a language model that implicitly plans via a latent stochastic process. TC does this by learning a representation which maps the dynamics of how text changes in a document to the dynamics of a stochastic process of interest. Using this representation, the language model can generate text by first implicitly generating a document plan via a stochastic process, and then generating text that is consistent with this latent plan. Compared to domain-specific methods and fine-tuning GPT2 across a variety of text domains, TC improves performance on text infilling and discourse coherence. On long text generation settings, TC preserves the text structure both in terms of ordering (up to +40% better) and text length consistency (up to +17% better). Human evaluators also prefer TC's output 28.6% more than the baselines.
Neural Program Synthesis with Query
Di Huang · Rui Zhang · Xing Hu · Xishan Zhang · Pengwei Jin · Nan Li · Zidong Du · Qi Guo · Yunji Chen
Aiming to find a program satisfying the user intent given input-output examples, program synthesis has attracted increasing interest in the area of machine learning. Despite the promising performance of existing methods, most of their success comes from the privileged information of well-designed input-output examples. However, providing such input-output examples is unrealistic because it requires the users to have the ability to describe the underlying program with a few input-output examples under the training distribution. In this work, we propose a query-based framework that trains a query neural network to generate informative input-output examples automatically and interactively from a large query space. The quality of the query depends on the amount of the mutual information between the query and the corresponding program, which can guide the optimization of the query framework. To estimate the mutual information more accurately, we introduce the functional space (F-space) which models the relevance between the input-output examples and the programs in a differentiable way. We evaluate the effectiveness and generalization of the proposed query-based framework on the Karel task and the list processing task. Experimental results show that the query-based framework can generate informative input-output examples which achieveand even outperform well-designed input-output examples.
Hot-Refresh Model Upgrades with Regression-Free Compatible Training in Image Retrieval
Binjie Zhang · Yixiao Ge · Yantao Shen · Yu Li · Chun Yuan · XUYUAN XU · Yexin Wang · Ying Shan
The task of hot-refresh model upgrades of image retrieval systems plays an essential role in the industry but has never been investigated in academia before. Conventional cold-refresh model upgrades can only deploy new models after the gallery is overall backfilled, taking weeks or even months for massive data. In contrast, hot-refresh model upgrades deploy the new model immediately and then gradually improve the retrieval accuracy by backfilling the gallery on-the-fly. Compatible training has made it possible, however, the problem of model regression with negative flips poses a great challenge to the stable improvement of user experience. We argue that it is mainly due to the fact that new-to-old positive query-gallery pairs may show less similarity than new-to-new negative pairs. To solve the problem, we introduce a Regression-Alleviating Compatible Training (RACT) method to properly constrain the feature compatibility while reducing negative flips. The core is to encourage the new-to-old positive pairs to be more similar than both the new-to-old negative pairs and the new-to-new negative pairs. An efficient uncertainty-based backfilling strategy is further introduced to fasten accuracy improvements. Extensive experiments on large-scale retrieval benchmarks (e.g., Google Landmark) demonstrate that our RACT effectively alleviates the model regression for one more step towards seamless model upgrades.
Our world is full of asymmetries. Gravity and wind can make reaching a place easier than coming back. Social artifacts such as genealogy charts and citation graphs are inherently directed. In reinforcement learning and control, optimal goal-reaching strategies are rarely reversible (symmetrical). Distance functions supported on these asymmetrical structures are called quasimetrics. Despite their common appearance, little research has been done on the learning of quasimetrics. Our theoretical analysis reveals that a common class of learning algorithms, including unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric consistent with training data. In contrast, our proposed Poisson Quasimetric Embedding (PQE) is the first quasimetric learning formulation that both is learnable with gradient-based optimization and enjoys strong performance guarantees. Experiments on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness over many common baselines.
A Unified Contrastive Energy-based Model for Understanding the Generative Ability of Adversarial Training
Yifei Wang · Yisen Wang · Jiansheng Yang · Zhouchen Lin
Adversarial Training (AT) is known as an effective approach to enhance the robustness of deep neural networks. Recently researchers notice that robust models with AT have good generative ability and can synthesize realistic images, while the reason behind it is yet under-explored. In this paper, we demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM). On the one hand, we provide the first probabilistic characterization of AT through a unified understanding of robustness and generative ability. On the other hand, our unified framework can be extended to the unsupervised scenario, which interprets unsupervised contrastive learning as an important sampling of CEM. Based on these, we propose a principled method to develop adversarial learning and sampling methods. Experiments show that the sampling methods derived from our framework improve the sample quality in both supervised and unsupervised learning. Notably, our unsupervised adversarial sampling method achieves an Inception score of 9.61 on CIFAR-10, which is superior to previous energy-based models and comparable to state-of-the-art generative models.
Weighted Training for Cross-Task Learning
Shuxiao Chen · Koby Crammer · Hangfeng He · Dan Roth · Weijie J Su
In this paper, we introduce Target-Aware Weighted Training (TAWT), a weighted training algorithm for cross-task learning based on minimizing a representation-based task distance between the source and target tasks. We show that TAWT is easy to implement, is computationally efficient, requires little hyperparameter tuning, and enjoys non-asymptotic learning-theoretic guarantees. The effectiveness of TAWT is corroborated through extensive experiments with BERT on four sequence tagging tasks in natural language processing (NLP), including part-of-speech (PoS) tagging, chunking, predicate detection, and named entity recognition (NER). As a byproduct, the proposed representation-based task distance allows one to reason in a theoretically principled way about several critical aspects of cross-task learning, such as the choice of the source data and the impact of fine-tuning.
We propose a probabilistic shape completion method extended to the continuous geometry of large-scale 3D scenes. Real-world scans of 3D scenes suffer from a considerable amount of missing data cluttered with unsegmented objects. The problem of shape completion is inherently ill-posed, and high-quality result requires scalable solutions that consider multiple possible outcomes. We employ the Generative Cellular Automata that learns the multi-modal distribution and transform the formulation to process large-scale continuous geometry. The local continuous shape is incrementally generated as a sparse voxel embedding, which contains the latent code for each occupied cell. We formally derive that our training objective for the sparse voxel embedding maximizes the variational lower bound of the complete shape distribution and therefore our progressive generation constitutes a valid generative model. Experiments show that our model successfully generates diverse plausible scenes faithful to the input, especially when the input suffers from a significant amount of missing data. We also demonstrate that our approach outperforms deterministic models even in less ambiguous cases with a small amount of missing data, which infers that probabilistic formulation is crucial for high-quality geometry completion on input scans exhibiting any levels of completeness.
AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning
Biwei Huang · Fan Feng · Chaochao Lu · Sara Magliacane · Kun Zhang
One practical challenge in reinforcement learning (RL) is how to make quick adaptations when faced with new environments. In this paper, we propose a principled framework for adaptive RL, called AdaRL, that adapts reliably and efficiently to changes across domains with a few samples from the target domain, even in partially observable environments. Specifically, we leverage a parsimonious graphical representation that characterizes structural relationships over variables in the RL system. Such graphical representations provide a compact way to encode what and where the changes across domains are, and furthermore inform us with a minimal set of changes that one has to consider for the purpose of policy adaptation. We show that by explicitly leveraging this compact representation to encode changes, we can efficiently adapt the policy to the target domain, in which only a few samples are needed and further policy optimization is avoided. We illustrate the efficacy of AdaRL through a series of experiments that vary factors in the observation, transition and reward functions for Cartpole and Atari games.
Trigger Hunting with a Topological Prior for Trojan Detection
Xiaoling Hu · Xiao Lin · Michael Cogswell · Yi Yao · Susmit Jha · Chao Chen
Despite their success and popularity, deep neural networks (DNNs) are vulnerable when facing backdoor attacks. This impedes their wider adoption, especially in mission critical applications. This paper tackles the problem of Trojan detection, namely, identifying Trojaned models – models trained with poisoned data. One popular approach is reverse engineering, i.e., recovering the triggers on a clean image by manipulating the model’s prediction. One major challenge of reverse engineering approach is the enormous search space of triggers. To this end, we propose innovative priors such as diversity and topological simplicity to not only increase the chances of finding the appropriate triggers but also improve the quality of the found triggers. Moreover, by encouraging a diverse set of trigger candidates, our method can perform effectively in cases with unknown target labels. We demonstrate that these priors can significantly improve the quality of the recovered triggers, resulting in substantially improved Trojan detection accuracy as validated on both synthetic and publicly available TrojAI benchmarks.
Tuformer: Data-driven Design of Transformers for Improved Generalization or Efficiency
Xiaoyu Liu · Jiahao Su · Furong Huang
Transformers are neural network architectures that achieve remarkable performance in many areas. However, the core component of Transformers, multi-head self-attention (MHSA), is mainly derived from heuristics, and the interactions across its components are not well understood. To address the problem, we first introduce a mathematically rigorous and yet intuitive tensor diagram representation of MHSA. Guided by tensor diagram representations, we propose a novel design, namely Tunable Transformers (Tuformers), by allowing data-driven weights across heads, whereas MHSA adopts pre-defined and fixed weights across heads, as will be explained in our paper. Tuformers naturally reveal a flexible design space that a user, depending on the needs, can choose a structure that has either improved performance (generalization error) or higher model efficiency. Any pre-trained Transformer can be an initialization of the corresponding Tuformer with trainable number of heads for efficient training and fine-tuning. Tuformers universally outperform Transformers on various tasks across multiple domains under a wide range of model sizes.
Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks
Sihyun Yu · Jihoon Tack · Sangwoo Mo · Hyunsu Kim · Junho Kim · Jung-Woo Ha · Jinwoo Shin
In the deep learning era, long video generation of high-quality still remains challenging due to the spatio-temporal complexity and continuity of videos. Existing prior works have attempted to model video distribution by representing videos as 3D grids of RGB values, which impedes the scale of generated videos and neglects continuous dynamics. In this paper, we found that the recent emerging paradigm of implicit neural representations (INRs) that encodes a continuous signal into a parameterized neural network effectively mitigates the issue. By utilizing INRs of video, we propose dynamics-aware implicit generative adversarial network (DIGAN), a novel generative adversarial network for video generation. Specifically, we introduce (a) an INR-based video generator that improves the motion dynamics by manipulating the space and time coordinates differently and (b) a motion discriminator that efficiently identifies the unnatural motions without observing the entire long frame sequences. We demonstrate the superiority of DIGAN under various datasets, along with multiple intriguing properties, e.g., long video synthesis, video extrapolation, and non-autoregressive video generation. For example, DIGAN improves the previous state-of-the-art FVD score on UCF-101 by 30.7% and can be trained on 128 frame videos of 128x128 resolution, 80 frames longer than the 48 frames of the previous state-of-the-art method.
Learning multiple tasks sequentially without forgetting previous knowledge, called Continual Learning(CL), remains a long-standing challenge for neural networks. Most existing methods rely on additional network capacity or data replay. In contrast, we introduce a novel approach which we refer to as Recursive Gradient Optimization(RGO). RGO is composed of an iteratively updated optimizer that modifies the gradient to minimize forgetting without data replay and a virtual Feature Encoding Layer(FEL) that represents different long-term structures with only task descriptors. Experiments demonstrate that RGO has significantly better performance on popular continual classification benchmarks when compared to the baselines and achieves new state-of-the-art performance on 20-split-CIFAR100(82.22%) and 20-split-miniImageNet(72.63%). With higher average accuracy than Single-Task Learning(STL), this method is flexible and reliable to provide continual learning capabilities for learning models that rely on gradient descent.
The Close Relationship Between Contrastive Learning and Meta-Learning
Renkun Ni · Manli Shu · Hossein Souri · Micah Goldblum · Tom Goldstein
Contrastive learning has recently taken off as a paradigm for learning from unlabeled data. In this paper, we discuss the close relationship between contrastive learning and meta-learning under a certain task distribution. We complement this observation by showing that established meta-learning methods, such as Prototypical Networks, achieve comparable performance to SimCLR when paired with this task distribution. This relationship can be leveraged by taking established techniques from meta-learning, such as task-based data augmentation, and showing that they benefit contrastive learning as well. These tricks also benefit state-of-the-art self-supervised learners without using negative pairs such as BYOL, which achieves 94.6\% accuracy on CIFAR-10 using a self-supervised ResNet-18 feature extractor trained with our meta-learning tricks. We conclude that existing advances designed for contrastive learning or meta-learning can be exploited to benefit the other, and it is better for contrastive learning researchers to take lessons from the meta-learning literature (and vice-versa) than to reinvent the wheel.
FedBABU: Toward Enhanced Representation for Federated Image Classification
Jaehoon Oh · SangMook Kim · Se-Young Yun
Federated learning has evolved to improve a single global model under data heterogeneity (as a curse) or to develop multiple personalized models using data heterogeneity (as a blessing). However, little research has considered both directions simultaneously. In this paper, we first investigate the relationship between them by analyzing Federated Averaging at the client level and determine that a better federated global model performance does not constantly improve personalization. To elucidate the cause of this personalization performance degradation problem, we decompose the entire network into the body (extractor), which is related to universality, and the head (classifier), which is related to personalization. We then point out that this problem stems from training the head. Based on this observation, we propose a novel federated learning algorithm, coined FedBABU, which only updates the body of the model during federated training (i.e., the head is randomly initialized and never updated), and the head is fine-tuned for personalization during the evaluation process. Extensive experiments show consistent performance improvements and an efficient personalization of FedBABU. The code is available at https://github.com/jhoon-oh/FedBABU.
Conditional Image Generation by Conditioning Variational Auto-Encoders
William Harvey · Saeid Naderiparizi · Frank Wood
We present a conditional variational auto-encoder (VAE) which, to avoid the substantial cost of training from scratch, uses an architecture and training objective capable of leveraging a foundation model in the form of a pretrained unconditional VAE. To train the conditional VAE, we only need to train an artifact to perform amortized inference over the unconditional VAE's latent variables given a conditioning input. We demonstrate our approach on tasks including image inpainting, for which it outperforms state-of-the-art GAN-based approaches at faithfully representing the inherent uncertainty. We conclude by describing a possible application of our inpainting model, in which it is used to perform Bayesian experimental design for the purpose of guiding a sensor.
Training invariances and the low-rank phenomenon: beyond linear networks
Thien Le · Stefanie Jegelka
The implicit bias induced by the training of neural networks has become a topic of rigorous study. In the limit of gradient flow and gradient descent with appropriate step size, it has been shown that when one trains a deep linear network with logistic or exponential loss on linearly separable data, the weights converge to rank-$1$ matrices. In this paper, we extend this theoretical result to the last few linear layers of the much wider class of nonlinear ReLU-activated feedforward networks containing fully-connected layers and skip connections. Similar to the linear case, the proof relies on specific local training invariances, sometimes referred to as alignment, which we show to hold for submatrices where neurons are stably-activated in all training examples, and it reflects empirical results in the literature. We also show this is not true in general for the full matrix of ReLU fully-connected layers. Our proof relies on a specific decomposition of the network into a multilinear function and another ReLU network whose weights are constant under a certain parameter directional convergence.
Recently, prefix-tuning has gained increasing attention as a parameter-efficient finetuning method for large-scale pretrained language models. The method keeps the pretrained models fixed and only updates the prefix token parameters for each downstream task. Despite being lightweight and modular, prefix-tuning still lacks robustness to textual adversarial attacks. However, most currently developed defense techniques necessitate auxiliary model update and storage, which inevitably hamper the modularity and low storage of prefix-tuning. In this work, we propose a robust prefix-tuning framework that preserves the efficiency and modularity of prefix-tuning. The core idea of our framework is leveraging the layerwise activations of the language model by correctly-classified training data as the standard for additional prefix finetuning. During the test phase, an extra batch-level prefix is tuned for each batch and added to the original prefix for robustness enhancement. Extensive experiments on three text classification benchmarks show that our framework substantially improves robustness over several strong baselines against five textual attacks of different types while maintaining comparable accuracy on clean texts. We also interpret our robust prefix-tuning framework from the optimal control perspective and pose several directions for future research.
Regularized Autoencoders for Isometric Representation Learning
Yonghyeon Lee · Sangwoong Yoon · MinJun Son · Frank Park
The recent success of autoencoders for representation learning can be traced in large part to the addition of a regularization term.Such regularized autoencoders ``constrain" the representation so as to prevent overfitting to the data while producing a parsimonious generative model. A regularized autoencoder should in principle learn not only the data manifold, but also a set of geometry-preserving coordinates for the latent representation space; by geometry-preserving we mean that the latent space representation should attempt to preserve actual distances and angles on the data manifold. In this paper we first formulate a hierarchy for geometry-preserving mappings (isometry, conformal mapping of degree $k$, area-preserving mappings). We then show that a conformal regularization term of degree zero -- i.e., one that attempts to preserve angles and relative distances, instead of angles and exact distances -- produces data representations that are superior to other existing methods. Applying our algorithm to an unsupervised information retrieval task for CelebA data with 40 annotations, we achieve 79\% precision at five retrieved images, an improvement of more than 10\% compared to recent related work. Code is available at https://github.com/Gabe-YHLee/IRVAE-public.
Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency Spiking Neural Networks
Tong Bu · Wei Fang · Jianhao Ding · PENGLIN DAI · Zhaofei Yu · Tiejun Huang
Spiking Neural Networks (SNNs) have gained great attraction due to their distinctive properties of low power consumption and fast inference on neuromorphic hardware. As the most effective method to get deep SNNs, ANN-SNN conversion has achieved comparable performance as ANNs on large-scale datasets. Despite this, it requires long time-steps to match the firing rates of SNNs to the activation of ANNs. As a result, the converted SNN suffers severe performance degradation problems with short time-steps, which hamper the practical application of SNNs. In this paper, we theoretically analyze ANN-SNN conversion error and derive the estimated activation function of SNNs. Then we propose the quantization clip-floor-shift activation function to replace the ReLU activation function in source ANNs, which can better approximate the activation function of SNNs. We prove that the expected conversion error between SNNs and ANNs is zero, enabling us to achieve high-accuracy and ultra-low-latency SNNs. We evaluate our method on CIFAR-10/100 and ImageNet datasets, and show that it outperforms the state-of-the-art ANN-SNN and directly trained SNNs in both accuracy and time-steps. To the best of our knowledge, this is the first time to explore high-performance ANN-SNN conversion with ultra-low latency (4 time-steps). Code is available at https://github.com/putshua/SNNconversionQCFS
Neural Contextual Bandits with Deep Representation and Shallow Exploration
Pan Xu · Zheng Wen · Handong Zhao · Quanquan Gu
We study neural contextual bandits, a general class of contextual bandits, where each context-action pair is associated with a raw feature vector, but the specific reward generating function is unknown. We propose a novel learning algorithm that transforms the raw feature vector using the last hidden layer of a deep ReLU neural network (deep representation learning), and uses an upper confidence bound (UCB) approach to explore in the last linear layer (shallow exploration). We prove that under standard assumptions, our proposed algorithm achieves $\tilde{O}(\sqrt{T})$ finite-time regret, where $T$ is the learning time horizon. Compared with existing neural contextual bandit algorithms, our approach is computationally much more efficient since it only needs to explore in the last layer of the deep neural network.
Learning curves for continual learning in neural networks: Self-knowledge transfer and forgetting
Ryo Karakida · Shotaro Akaho
Sequential training from task to task is becoming one of the major objects in deep learning applications such as continual learning and transfer learning. Nevertheless, it remains unclear under what conditions the trained model's performance improves or deteriorates. To deepen our understanding of sequential training, this study provides a theoretical analysis of generalization performance in a solvable case of continual learning. We consider neural networks in the neural tangent kernel (NTK) regime that continually learn target functions from task to task, and investigate the generalization by using an established statistical mechanical analysis of kernel ridge-less regression. We first show characteristic transitions from positive to negative transfer. More similar targets above a specific critical value can achieve positive knowledge transfer for the subsequent task while catastrophic forgetting occurs even with very similar targets. Next, we investigate a variant of continual learning which supposes the same target function in multiple tasks. Even for the same target, the trained model shows some transfer and forgetting depending on the sample size of each task. We can guarantee that the generalization error monotonically decreases from task to task for equal sample sizes while unbalanced sample sizes deteriorate the generalization. We respectively refer to these improvement and deterioration as self-knowledge transfer and forgetting, and empirically confirm them in realistic training of deep neural networks as well.
Decoupled Adaptation for Cross-Domain Object Detection
Junguang Jiang · baixu chen · Jianmin Wang · Mingsheng Long
Cross-domain object detection is more challenging than object classification since multiple objects exist in an image and the location of each object is unknown in the unlabeled target domain. As a result, when we adapt features of different objects to enhance the transferability of the detector, the features of the foreground and the background are easy to be confused, which may hurt the discriminability of the detector. Besides, previous methods focused on category adaptation but ignored another important part for object detection, i.e., the adaptation on bounding box regression. To this end, we propose D-adapt, namely Decoupled Adaptation, to decouple the adversarial adaptation and the training of the detector. Besides, we fill the blank of regression domain adaptation in object detection by introducing a bounding box adaptor. Experiments show that \textit{D-adapt} achieves state-of-the-art results on four cross-domain object detection tasks and yields 17\% and 21\% relative improvement on benchmark datasets Clipart1k and Comic2k in particular.
Resonance in Weight Space: Covariate Shift Can Drive Divergence of SGD with Momentum
Kirby Banman · Garnet Liam Peet-Pare · Nidhi Hegde · Alona Fyshe · Martha White
Most convergence guarantees for stochastic gradient descent with momentum (SGDm) rely on iid sampling. Yet, SGDm is often used outside this regime, in settings with temporally correlated input samples such as continual learning and reinforcement learning. Existing work has shown that SGDm with a decaying step-size can converge under Markovian temporal correlation. In this work, we show that SGDm under covariate shift with a fixed step-size can be unstable and diverge. In particular, we show SGDm under covariate shift is a parametric oscillator, and so can suffer from a phenomenon known as resonance. We approximate the learning system as a time varying system of ordinary differential equations, and leverage existing theory to characterize the system's divergence/convergence as resonant/nonresonant modes. The theoretical result is limited to the linear setting with periodic covariate shift, so we empirically supplement this result to show that resonance phenomena persist even under non-periodic covariate shift, nonlinear dynamics with neural networks, and optimizers other than SGDm.
Taming Sparsely Activated Transformer with Stochastic Experts
Simiao Zuo · Xiaodong Liu · Jian Jiao · Young Jin Kim · Hany Hassan Awadalla · Ruofei Zhang · Jianfeng Gao · Tuo Zhao
Sparsely activated models (SAMs), such as Mixture-of-Experts (MoE), can easily scale to have outrageously large amounts of parameters without significant increase in computational cost. However, SAMs are reported to be parameter inefficient such that larger models do not always lead to better performance. While most on-going research focuses on improving SAMs models by exploring methods of routing inputs to experts, our analysis reveals that such research might not lead to the solution we expect, i.e., the commonly-used routing methods based on gating mechanisms do not work better than randomly routing inputs to experts. In this paper, we propose a new expert-based model, THOR ($\underline{\textbf{T}}$ransformer wit$\underline{\textbf{H}}$ St$\underline{\textbf{O}}$chastic Expe$\underline{\textbf{R}}$ts). Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference. THOR models are trained using a consistency regularized loss, where experts learn not only from training data but also from other experts as teachers, such that all the experts make consistent predictions. We validate the effectiveness of THOR on machine translation tasks. Results show that THOR models are more parameter efficient in that they significantly outperform the Transformer and MoE models across various settings. For example, in multilingual translation, THOR outperforms the Switch Transformer by 2 BLEU scores, and obtains the same BLEU score as that of a state-of-the-art MoE model that is 18 times larger. Our code is publicly available at: https://github.com/microsoft/Stochastic-Mixture-of-Experts.
On Non-Random Missing Labels in Semi-Supervised Learning
Xinting Hu · Yulei Niu · Chunyan Miao · Xian-Sheng Hua · Hanwang Zhang
Semi-Supervised Learning (SSL) is fundamentally a missing label problem, in which the label Missing Not At Random (MNAR) problem is more realistic and challenging, compared to the widely-adopted yet naive Missing Completely At Random assumption where both labeled and unlabeled data share the same class distribution. Different from existing SSL solutions that overlook the role of ''class'' in causing the non-randomness, e.g., users are more likely to label popular classes, we explicitly incorporate ''class'' into SSL. Our method is three-fold: 1) We propose Class-Aware Propensity (CAP) that exploits the unlabeled data to train an improved classifier using the biased labeled data. 2) To encourage rare class training, whose model is low-recall but high-precision that discards too many pseudo-labeled data, we propose Class-Aware Imputation (CAI) that dynamically decreases (or increases) the pseudo-label assignment threshold for rare (or frequent) classes. 3) Overall, we integrate CAP and CAI into a Class-Aware Doubly Robust (CADR) estimator for training an unbiased SSL model. Under various MNAR settings and ablations, our method not only significantly outperforms existing baselines, but also surpasses other label bias removal SSL methods.
Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Huazhe Xu · Xiaolong Wang
We propose to address quadrupedal locomotion tasks using Reinforcement Learning (RL) with a Transformer-based model that learns to combine proprioceptive information and high-dimensional depth sensor inputs. While learning-based locomotion has made great advances using RL, most methods still rely on domain randomization for training blind agents that generalize to challenging terrains. Our key insight is that proprioceptive states only offer contact measurements for immediate reaction, whereas an agent equipped with visual sensory observations can learn to proactively maneuver environments with obstacles and uneven terrain by anticipating changes in the environment many steps ahead. In this paper, we introduce LocoTransformer, an end-to-end RL method that leverages both proprioceptive states and visual observations for locomotion control. We evaluate our method in challenging simulated environments with different obstacles and uneven terrain. We transfer our learned policy from simulation to a real robot by running it indoor and in-the-wild with unseen obstacles and terrain. Our method not only significantly improves over baselines, but also achieves far better generalization performance, especially when transferred to the real robot. Our project page with videos is at https://rchalyang.github.io/LocoTransformer/.
Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How
Yuning You · Yue Cao · Tianlong Chen · Zhangyang Wang · Yang Shen
Optimizing an objective function with uncertainty awareness is well-known to improve the accuracy and confidence of optimization solutions. Meanwhile, another relevant but very different question remains yet open: how to model and quantify the uncertainty of an optimization algorithm (a.k.a., optimizer) itself? To close such a gap, the prerequisite is to consider the optimizers as sampled from a distribution, rather than a few prefabricated and fixed update rules. We first take the novel angle to consider the algorithmic space of optimizers, and provide definitions for the optimizer prior and likelihood, that intrinsically determine the posterior and therefore uncertainty. We then leverage the recent advance of learning to optimize (L2O) for the space parameterization, with the end-to-end training pipeline built via variational inference, referred to as uncertainty-aware L2O (UA-L2O). Our study represents the first effort to recognize and quantify the uncertainty of the optimization algorithm. The extensive numerical results show that, UA-L2O achieves superior uncertainty calibration with accurate confidence estimation and tight confidence intervals, suggesting the improved posterior estimation thanks to considering optimizer uncertainty. Intriguingly, UA-L2O even improves optimization performances for two out of three test functions, the loss function in data privacy attack, and four of five cases of the energy function in protein docking. Our codes are released at https://github.com/Shen-Lab/Bayesian-L2O.
Data-Efficient Graph Grammar Learning for Molecular Generation
Minghao Guo · Veronika Thost · Beichen Li · Payel Das · Jie Chen · Wojciech Matusik
The problem of molecular generation has received significant attention recently. Existing methods are typically based on deep neural networks and require training on large datasets with tens of thousands of samples. In practice, however, the size of class-specific chemical datasets is usually limited (e.g., dozens of samples) due to labor-intensive experimentation and data collection. Another major challenge is to generate only physically synthesizable molecules. This is a non-trivial task for neural network-based generative models since the relevant chemical knowledge can only be extracted and generalized from the limited training data. In this work, we propose a data-efficient generative model that can be learned from datasets with orders of magnitude smaller sizes than common benchmarks. At the heart of this method is a learnable graph grammar that generates molecules from a sequence of production rules. Without any human assistance, these production rules are automatically constructed from training data. Furthermore, additional chemical knowledge can be incorporated into the model by further grammar optimization. Our learned graph grammar yields state-of-the-art results on generating high-quality molecules for three monomer datasets that contain only ${\sim}20$ samples each. Our approach also achieves remarkable performance in a challenging polymer generation task with $only$ $117$ training samples and is competitive against existing methods using $81$k data points.
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Beidi Chen · Tri Dao · Kaizhao Liang · Jiaming Yang · Zhao Song · Atri Rudra · Christopher Re
Overparameterized neural networks generalize well but are expensive to train. Ideally one would like to reduce their computational cost while retaining their generalization benefits. Sparse model training is a simple and promising approach to achieve this, but there remain challenges as existing methods struggle with accuracy loss, slow training runtime, or difficulty in sparsifying all model components. The core problem is that searching for a sparsity mask over a discrete set of sparse matrices is difficult and expensive. To address this, our main insight is to optimize over a continuous superset of sparse matrices with a fixed structure known as products of butterfly matrices. As butterfly matrices are not hardware efficient, we propose simple variants of butterfly (block and flat) to take advantage of modern hardware. Our method (Pixelated Butterfly) uses a simple fixed sparsity pattern based on flat block butterfly and low-rank matrices to sparsify most network layers (e.g., attention, MLP). We empirically validate that Pixelated Butterfly is $3\times$ faster than Butterfly and speeds up training to achieve favorable accuracy--efficiency tradeoffs. On the ImageNet classification and WikiText-103 language modeling tasks, our sparse models train up to 2.3$\times$ faster than the dense MLP-Mixer, Vision Transformer, and GPT-2 small with no drop in accuracy.
Is High Variance Unavoidable in RL? A Case Study in Continuous Control
Johan Bjorck · Carla Gomes · Kilian Weinberger
Reinforcement learning (RL) experiments have notoriously high variance, and minor details can have disproportionately large effects on measured outcomes. This is problematic for creating reproducible research and also serves as an obstacle when applying RL to sensitive real-world applications. In this paper, we investigate causes for this perceived instability. To allow for an in-depth analysis, we focus on a specifically popular setup with high variance -- continuous control from pixels with an actor-critic agent. In this setting, we demonstrate that poor outlier runs which completely fail to learn are an important source of variance, but that weight initialization and initial exploration are not at fault. We show that one cause for these outliers is unstable network parametrization which leads to saturating nonlinearities. We investigate several fixes to this issue and find that simply normalizing penultimate features is surprisingly effective. For sparse tasks, we also find that partially disabling clipped double Q-learning decreases variance. By combining fixes we significantly decrease variances, lowering the average standard deviation across 21 tasks by a factor >3 for a state-of-the-art agent. This demonstrates that the perceived variance is not necessarily inherent to RL. Instead, it may be addressed via simple modifications and we argue that developing low-variance agents is an important goal for the RL community.
We study the problem of inferring an object-centric scene representation from a single image, aiming to derive a representation that explains the image formation process, captures the scene's 3D nature, and is learned without supervision. Most existing methods on scene decomposition lack one or more of these characteristics, due to the fundamental challenge in integrating the complex 3D-to-2D image formation process into powerful inference schemes like deep networks. In this paper, we propose unsupervised discovery of Object Radiance Fields (uORF), integrating recent progresses in neural 3D scene representations and rendering with deep inference networks for unsupervised 3D scene decomposition. Trained on multi-view RGB images without annotations, uORF learns to decompose complex scenes with diverse, textured background from a single image. We show that uORF enables novel tasks, such as scene segmentation and editing in 3D, and it performs well on these tasks and on novel view synthesis on three datasets.