Spotlight
PAC-Bayes Information Bottleneck
Zifeng Wang · Shao-Lun Huang · Ercan Kuruoglu · Jimeng Sun · Xi Chen · Yefeng Zheng
Understanding the source of the superior generalization ability of NNs remains one of the most important problems in ML research. There have been a series of theoretical works trying to derive non-vacuous bounds for NNs. Recently, the compression of information stored in weights (IIW) is proved to play a key role in NNs generalization based on the PAC-Bayes theorem. However, no solution of IIW has ever been provided, which builds a barrier for further investigation of the IIW's property and its potential in practical deep learning. In this paper, we propose an algorithm for the efficient approximation of IIW. Then, we build an IIW-based information bottleneck on the trade-off between accuracy and information complexity of NNs, namely PIB. From PIB, we can empirically identify the fitting to compressing phase transition during NNs' training and the concrete connection between the IIW compression and the generalization. Besides, we verify that IIW is able to explain NNs in broad cases, e.g., varying batch sizes, over-parameterization, and noisy labels. Moreover, we propose an MCMC-based algorithm to sample from the optimal weight posterior characterized by PIB, which fulfills the potential of IIW in enhancing NNs in practice.