Workshop
AI for Earth and Space Science
Natasha Dudek · Karianne Bergen · Stewart Jamieson · Valentin Tertius Bickel · Will Chapman · Johanna Hansen
Fri 29 Apr, 8 a.m. PDT
When will the San Andreas faultline next experience a massive earthquake? What can be done to reduce human exposure to zoonotic pathogens such as coronaviruses and schistosomiasis? How can robots be used to explore other planets in the search for extraterrestrial life? AI is posed to play a critical role in answering Earth and Space Sciences questions such as these, boosted by continually expanding, massive volumes of data from geo-scientific sensors, remote sensing data from satellites and space probes, and simulated data from high performance climate and weather simulations. The complexity of these datasets, however, poses an inherent challenge to AI, as they are often noisy, may contain time and/or geographic dependencies, and require substantial interdisciplinary expertise to collect and interpret.This workshop aims to highlight work being done at the intersection of AI and the Earth and Space Sciences, with a special focus on model interpretability at the ICLR 2022 iteration of the workshop (formerly held at ICLR 2020 and NeurIPS 2020). Notably, we do not focus on climate change as this specialized topic is addressed elsewhere and our scope is substantially broader. We showcase cutting-edge applications of machine learning to Earth and Space Science problems, including study of the atmosphere, biosphere (ecology), hydrosphere (water), lithosphere (solid Earth), sensors and sampling, and planetary science. We cultivate areas where Earth and planetary science is informing and inspiring new developments in AI, including theoretical developments in interpretable AI models, hybrid models with knowledge-guided AI, augmenting physics-based models with AI, representation learning from graphs and manifolds in spatiotemporal models, and dimensionality reduction. For example, the application of physics-informed AI to fluid dynamics is leading to major advances in weather forecasting, in turn inspiring exciting new hybrid model-based/model-free methods.
Schedule
Fri 8:00 a.m. - 8:05 a.m.
|
Introductory Remarks
(
Introductory Remarks
)
>
SlidesLive Video |
Natasha Dudek 🔗 |
Fri 8:05 a.m. - 8:35 a.m.
|
Explainable, Interpretable, and Trustworthy AI for the Earth Sciences
(
Keynote Presentation
)
>
|
Amy McGovern 🔗 |
Fri 8:35 a.m. - 8:45 a.m.
|
Q&A with Amy McGovern
(
Q&A
)
>
|
Amy McGovern 🔗 |
Fri 8:45 a.m. - 8:45 a.m.
|
Introduction to the Earth, Space, and Beyond Session
(
Introductory Remarks
)
>
SlidesLive Video |
Karianne Bergen · Valentin Tertius Bickel 🔗 |
Fri 8:45 a.m. - 9:05 a.m.
|
Model Interpretability as Key Trust Element for Onboard Science Autonomy
(
Invited talk - 20 min
)
>
|
Lukas Mandrake 🔗 |
Fri 9:05 a.m. - 9:15 a.m.
|
Don't Pay Attention to the Noise: Learning Self-supervised Light Curve Representations with a Denoising Time Series Transformer
(
Regular talk - 10 min
)
>
SlidesLive Video |
Mario Morvan · Nikolaos Nikolaou · Kai Yip · Ingo Waldmann 🔗 |
Fri 9:15 a.m. - 9:25 a.m.
|
Group Equivariant Neural Networks for Spectropolarimetric Inversions in Solar Astronomy
(
Regular talk - 10 min
)
>
SlidesLive Video |
Michael Ito · Ian Cunnyngham · Xudong Sun · Peter Sadowski 🔗 |
Fri 9:25 a.m. - 9:30 a.m.
|
MIMSS: A Dataset to evaluate Multi-Image Multi-Spectral Super-Resolution on Sentinel 2
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Muhammed Razzak · Gonzalo Mateo-Garcia · Gurvan Lecuyer · Gomez-Chova, Luis · Yarin Gal · Freddie Kalaitzis 🔗 |
Fri 9:30 a.m. - 9:35 a.m.
|
Learning latent representations for operational nitrogen response rate prediction
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Christos Pylianidis · Ioannis N. Athanasiadis 🔗 |
Fri 9:35 a.m. - 9:40 a.m.
|
Towards Fast Simulation of Environmental Fluid Mechanics with Multi-Scale Graph Neural Networks
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Mario Lino Valencia · Stathi Fotiadis · Anil Bharath · Chris Cantwell 🔗 |
Fri 9:40 a.m. - 9:50 a.m.
|
Learning Large-scale Subsurface Simulations with a Hybrid Graph Network Simulator
(
Regular talk - 10 min
)
>
SlidesLive Video |
Tailin Wu · Qinchen Wang · Yinan Zhang · Zhitao Ying · Kaidi Cao · Rok Sosic · Ridwan Jalali · Hassan Hamam · Marko Maucec · Jure Leskovec 🔗 |
Fri 9:50 a.m. - 10:00 a.m.
|
Q&A for the Earth, Space, and Beyond Session
(
Q&A
)
>
|
33 presentersKarianne Bergen · Valentin Tertius Bickel · Lukas Mandrake · Mario Morvan · Nikolaos Nikolaou · Kai Yip · Ingo Waldmann · Michael Ito · Xudong Sun · Peter Sadowski · Ian Cunnyngham · Muhammed Razzak · Gonzalo Mateo-Garcia · Gurvan Lecuyer · Gomez-Chova, Luis · Yarin Gal · Freddie Kalaitzis · Christos Pylianidis · Ioannis N. Athanasiadis · Mario Lino Valencia · Stathi Fotiadis · Anil Bharath · Chris Cantwell · Tailin Wu · Qinchen Wang · Yinan Zhang · Zhitao Ying · Kaidi Cao · Rok Sosic · Jure Leskovec · Ridwan Jalali · Hassan Hamam · Marko Maucec |
Fri 10:00 a.m. - 11:00 a.m.
|
Poster session ( Poster session ) > link | 🔗 |
Fri 11:00 a.m. - 11:05 a.m.
|
Introduction to the Atmosphere Session
(
Introductory Remarks
)
>
|
Will Chapman 🔗 |
Fri 11:05 a.m. - 11:25 a.m.
|
FourCastNet: A Data-driven Model for High-resolution Weather Forecasts using Adaptive Fourier Neural Operators
(
Featured talk - 20 min
)
>
SlidesLive Video |
13 presentersJaideep Pathak · Shashank Subramanian · Peter Harrington · Sanjeev Raja · Ashesh Chattopadhyay · Morteza Mardani · Thorsten Kurth · David M. Hall · Zongyi Li · Kamyar Azizzadenesheli · Pedram Hassanzadeh · Karthik Kashinath · Anima Anandkumar |
Fri 11:25 a.m. - 11:35 a.m.
|
Street-Level Air Pollution Modelling with Graph Gaussian Processes
(
Regular talk - 10 min
)
>
SlidesLive Video |
Thomas Pinder · Kathryn Turnbull · Christopher Nemeth · David Leslie 🔗 |
Fri 11:35 a.m. - 11:45 a.m.
|
Trainable Wavelet Neural Network for Non-Stationary Signals
(
Regular talk - 10 min
)
>
SlidesLive Video |
Jason Stock · Charles Anderson 🔗 |
Fri 11:45 a.m. - 11:55 a.m.
|
Neural Operator with Regularity Structure for Modeling Dynamics Driven by SPDEs
(
Regular talk - 10 min
)
>
SlidesLive Video |
Peiyan Hu · Qi Meng · Bingguang Chen · Shiqi Gong · Yue Wang · Wei Chen · Rongchan Zhu · Zhi-Ming Ma · Tie-Yan Liu 🔗 |
Fri 11:55 a.m. - 12:00 p.m.
|
Convolutional autoencoders for spatially-informed ensemble post-processing
(
Lightning talk - 5 min
)
>
|
Sebastian Lerch · Kai Polsterer 🔗 |
Fri 12:00 p.m. - 12:10 p.m.
|
Testing Interpretability Techniques for Deep Statistical Climate Downscaling
(
Regular talk - 10 min
)
>
SlidesLive Video |
Jose González-Abad · Jorge Baño-Medina · José Manuel Gutiérrez 🔗 |
Fri 12:10 p.m. - 12:30 p.m.
|
Q&A for the Atmosphere Session
(
Q&A
)
>
|
34 presentersWill Chapman · Thomas Pinder · Kathryn Turnbull · Christopher Nemeth · David Leslie · Jason Stock · Charles Anderson · Jaideep Pathak · Peter Harrington · Ashesh Chattopadhyay · Thorsten Kurth · David M. Hall · Kamyar Azizzadenesheli · Pedram Hassanzadeh · Anima Anandkumar · Shashank Subramanian · Sanjeev Raja · Morteza Mardani · Zongyi Li · Karthik Kashinath · Peiyan Hu · Qi Meng · Bingguang Chen · Shiqi Gong · Yue Wang · Wei Chen · Rongchan Zhu · Zhi-Ming Ma · Tie-Yan Liu · Sebastian Lerch · Kai Polsterer · Jose González-Abad · Jorge Baño-Medina · José Manuel Gutiérrez |
Fri 12:30 p.m. - 12:30 p.m.
|
Introduction to the Sensors and Sampling Session
(
Introduction
)
>
SlidesLive Video |
Stewart Jamieson 🔗 |
Fri 12:30 p.m. - 12:45 p.m.
|
Connecting With A Restored Wetland Via A Large-Scale Multimodal Sensor Deployment
(
Session keynote presentation - 15 min
)
>
|
Joseph Paradiso 🔗 |
Fri 12:45 p.m. - 12:50 p.m.
|
Q&A with Joseph Paradiso
(
Q&A
)
>
|
Joseph Paradiso · Stewart Jamieson 🔗 |
Fri 12:50 p.m. - 12:55 p.m.
|
Meta-Learning and Self-Supervised Pretraining for Storm Event Imagery Translation
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Ileana Rugina · Rumen R Dangovski · Mark Veillette · Pooya Khorrami · Brian Cheung · Olga Simek · Marin Soljacic 🔗 |
Fri 12:55 p.m. - 1:00 p.m.
|
Reinforcement Learning State Estimation for High-Dimensional Nonlinear Systems
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Saviz Mowlavi · mouhacine Benosman · Saleh Nabi 🔗 |
Fri 1:00 p.m. - 1:15 p.m.
|
Q&A for the Sensors and Sampling Session
(
Q&A
)
>
|
11 presentersStewart Jamieson · Ileana Rugina · Rumen R Dangovski · Mark Veillette · Pooya Khorrami · Brian Cheung · Olga Simek · Marin Soljacic · Saviz Mowlavi · mouhacine Benosman · Saleh Nabi |
Fri 1:15 p.m. - 1:30 p.m.
|
Break
|
🔗 |
Fri 1:30 p.m. - 1:30 p.m.
|
Introduction to the Hydrosphere Session
(
Introduction
)
>
SlidesLive Video |
Natasha Dudek 🔗 |
Fri 1:30 p.m. - 1:40 p.m.
|
Learning Directed Structure for Multi-Output Gaussian Processes with the AcyGP Model
(
Regular talk (10 min)
)
>
SlidesLive Video |
Benjamin J Ayton · Richard Camilli · Brian Williams 🔗 |
Fri 1:40 p.m. - 1:50 p.m.
|
Multimodel Ensemble Predictions of Precipitation using Bayesian Neural Networks
(
Regular talk - 10 min
)
>
SlidesLive Video |
Ming Fan · Dan Lu · Deeksha Rastogi 🔗 |
Fri 1:50 p.m. - 1:55 p.m.
|
Unsupervised Downscaling of Sea Surface Height with Deep Image Prior
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Arthur Filoche · Théo Archambault · Dominique Béréziat · Anastase Charantonis 🔗 |
Fri 1:55 p.m. - 2:00 p.m.
|
Comparing Loss Representations for SAR Sea Ice Concentration Charting
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Andrzej Kucik · Andreas Stokholm 🔗 |
Fri 2:00 p.m. - 2:05 p.m.
|
Practical Advances in Short-Term Spectral Wave Forecasting with SWRL Net
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Chloe Dawson · Noah Reneau · Brian Hutchinson · Sean Crosby 🔗 |
Fri 2:05 p.m. - 2:30 p.m.
|
Q&A for the Hydrosphere Session
(
Q&A
)
>
|
18 presentersNatasha Dudek · Benjamin J Ayton · Richard Camilli · Brian Williams · Ming Fan · Dan Lu · Deeksha Rastogi · Samuel Greydanus · Arthur Filoche · Théo Archambault · Dominique Béréziat · Anastase Charantonis · Andrzej Kucik · Andreas Stokholm · Brian Hutchinson · Noah Reneau · Sean Crosby · Chloe Dawson |
Fri 2:30 p.m. - 2:30 p.m.
|
Introduction to the Ecology Session
(
Introduction
)
>
SlidesLive Video |
Natasha Dudek 🔗 |
Fri 2:30 p.m. - 2:50 p.m.
|
Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning
(
Invited talk - 20 min
)
>
SlidesLive Video |
Jeff Clune 🔗 |
Fri 2:50 p.m. - 3:00 p.m.
|
An interpretable machine learning model for advancing terrestrial ecosystem predictions
(
Regular talk - 10 min
)
>
SlidesLive Video |
Dan Lu · Daniel Ricciuto · Siyan Liu 🔗 |
Fri 3:00 p.m. - 3:05 p.m.
|
A weakly supervised framework for high-resolution crop yield forecasts
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Dilli Paudel · Diego Marcos · Allard de Wit · Hendrik Boogaard · Ioannis N. Athanasiadis 🔗 |
Fri 3:05 p.m. - 3:10 p.m.
|
Invertible neural networks for E3SM land model calibration and simulation
(
Lightning talk - 5 min
)
>
SlidesLive Video |
Dan Lu · Daniel Ricciuto · Jiaxin Zhang 🔗 |
Fri 3:10 p.m. - 3:30 p.m.
|
Q&A for the Ecology Session
(
Q&A
)
>
|
11 presentersNatasha Dudek · Jeff Clune · Dan Lu · Siyan Liu · Daniel Ricciuto · Dilli Paudel · Diego Marcos · Ioannis N. Athanasiadis · Allard de Wit · Hendrik Boogaard · Jiaxin Zhang |
Fri 3:30 p.m. - 4:30 p.m.
|
Panel discussion on the future of model interpretability in the Earth and Space Sciences
(
Discussion panel
)
>
|
Andrew Ross · Leilani Gilpin · Natasha Dudek · Antonios Mamalakis · Karianne Bergen 🔗 |
Fri 4:30 p.m. - 4:35 p.m.
|
Closing remarks
(
Closing remarks
)
>
SlidesLive Video |
Natasha Dudek 🔗 |
-
|
Don't Pay Attention to the Noise: Learning Self-supervised Light Curve Representations with a Denoising Time Series Transformer
(
Poster
)
>
|
Mario Morvan · Nikolaos Nikolaou · Kai Yip · Ingo Waldmann 🔗 |
-
|
Convolutional autoencoders for spatially-informed ensemble post-processing
(
Poster
)
>
|
Sebastian Lerch · Kai Polsterer 🔗 |
-
|
Meta-Learning and Self-Supervised Pretraining for Storm Event Imagery Translation
(
Poster
)
>
|
Ileana Rugina · Rumen R Dangovski · Mark Veillette · Pooya Khorrami · Brian Cheung · Olga Simek · Marin Soljacic 🔗 |
-
|
Testing Interpretability Techniques for Deep Statistical Climate Downscaling
(
Poster
)
>
|
Jose González-Abad · Jorge Baño-Medina · José Manuel Gutiérrez 🔗 |
-
|
Towards Fast Simulation of Environmental Fluid Mechanics with Multi-Scale Graph Neural Networks
(
Poster
)
>
|
Mario Lino Valencia · Stathi Fotiadis · Anil Bharath · Chris Cantwell 🔗 |
-
|
Street-Level Air Pollution Modelling with Graph Gaussian Processes
(
Poster
)
>
|
Thomas Pinder · Kathryn Turnbull · Christopher Nemeth · David Leslie 🔗 |
-
|
Multimodel Ensemble Predictions of Precipitation using Bayesian Neural Networks
(
Poster
)
>
|
Ming Fan · Dan Lu · Deeksha Rastogi 🔗 |
-
|
A weakly supervised framework for high-resolution crop yield forecasts
(
Poster
)
>
|
Dilli Paudel · Diego Marcos · Allard de Wit · Hendrik Boogaard · Ioannis N. Athanasiadis 🔗 |
-
|
Learning Large-scale Subsurface Simulations with a Hybrid Graph Network Simulator
(
Poster
)
>
|
Tailin Wu · Qinchen Wang · Yinan Zhang · Zhitao Ying · Kaidi Cao · Rok Sosic · Ridwan Jalali · Hassan Hamam · Marko Maucec · Jure Leskovec 🔗 |
-
|
Practical Advances in Short-Term Spectral Wave Forecasting with SWRL Net
(
Poster
)
>
|
Chloe Dawson · Noah Reneau · Brian Hutchinson · Sean Crosby 🔗 |
-
|
FourCastNet: A Data-driven Model for High-resolution Weather Forecasts using Adaptive Fourier Neural Operators
(
Poster
)
>
|
13 presentersJaideep Pathak · Shashank Subramanian · Peter Harrington · Sanjeev Raja · Ashesh Chattopadhyay · Morteza Mardani · Thorsten Kurth · David M. Hall · Zongyi Li · Kamyar Azizzadenesheli · Pedram Hassanzadeh · Karthik Kashinath · Anima Anandkumar |
-
|
Learning latent representations for operational nitrogen response rate prediction
(
Poster
)
>
|
Christos Pylianidis · Ioannis N. Athanasiadis 🔗 |
-
|
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
(
Paper only - no talk or poster
)
>
|
Samuel Greydanus 🔗 |
-
|
Neural Operator with Regularity Structure for Modeling Dynamics Driven by SPDEs
(
Poster
)
>
|
Peiyan Hu · Qi Meng · Bingguang Chen · Shiqi Gong · Yue Wang · Wei Chen · Rongchan Zhu · Zhi-Ming Ma · Tie-Yan Liu 🔗 |
-
|
Hurricane Forecasting: A Novel Multimodal Machine Learning Approach
(
Poster
)
>
|
Léonard Boussioux · Cynthia Zeng · Théo Guenais · Dimitris Bertsimas 🔗 |
-
|
GRASP EARTH: Intuitive Software for Discovering Changes on the Planet
(
Poster
)
>
|
Waku Hatakeyama · Shiro Kawakita · Ryohei Izawa · Masanari Kimura 🔗 |
-
|
Imbalance-Aware Learning for Deep Physics Modeling
(
Poster
)
>
SlidesLive Video |
Takahito Yoshida · Takaharu Yaguchi · Takashi Matsubara 🔗 |
-
|
Machine learning based surrogate modelling and parameter identification for wildfire forecasting
(
Poster
)
>
|
Sibo Cheng · Rossella Arcucci 🔗 |
-
|
MACHINE LEARNING FOR BENTHIC TAXON IDENTIFICATION
(
Poster
)
>
|
Aiswarya Vellappally · Mckenzie Love · Freya Watkins · Song Hou · Tim Jackson-Bue 🔗 |
-
|
Interpretable Climate Change Modeling with Progressive Cascade Networks
(
Poster
)
>
|
Charles Anderson · Jason Stock · David Anderson 🔗 |
-
|
Conditional Emulation of Global Precipitation with Generative Adversarial Networks
(
Poster
)
>
|
Alexis Ayala · Chris Drazic · Seth Bassetti · Eric Slyman · Brenna Nieva · Piper Wolters · Kyle Bittner · Claudia Tebaldi · Ben Kravitz · Brian Hutchinson 🔗 |
-
|
Deep Learning-Based Surrogate Modelling of Thermal Plumes for Shallow Subsurface Temperature Approximation
(
Poster
)
>
|
Raphael Leiteritz · Kyle Davis · Miriam Schulte · Dirk Pflüger 🔗 |
-
|
Improving remote monitoring of carbon stock in tropical forests with machine learning, a case study in Indonesian Borneo
(
Poster
)
>
|
Andrew Chamberlin · Krti Tallam · Zac Liu · Giulio De Leo 🔗 |
-
|
Development and Statistical Analysis of an Automated Meteor Detection Pipeline for GOES Weather Satellites
(
Poster
)
>
|
Jeffrey Smith · Robert Morris · Randolph Longenbaugh · Alexandria Clark · Jessie Dotson · Nina McCurdy · Christopher Henze 🔗 |
-
|
Inferring Antarctica’s Geology with a Variation of Information Inversion and Machine Learning
(
Poster
)
>
|
Mareen Lösing · Max Moorkamp · Jörg Ebbing 🔗 |
-
|
DRIFT-NCRN: A BENCHMARK DATASET FOR DRIFTER TRAJECTORY PREDICTION
(
Poster
)
>
|
Johanna Hansen · Khalil Virji · Travis Manderson · David Meger · Gregory Dudek 🔗 |
-
|
Detection of southern sea otters (Enhydra lutris nereis) from aerial imaging on the Monterey Peninsula
(
Poster
)
>
|
Margaret Daly 🔗 |
-
|
APOGEE Net: An expanded spectral model of both low mass and high mass stars
(
Poster
)
>
|
Dani Sprague · Connor Culhane · Marina Kounkel · Richard Olney · Kevin Covey · Brian Hutchinson 🔗 |
-
|
A multi-modal representation of El Nino Southern Oscillation Diversity
(
Poster
)
>
|
Jakob Schlör · Bedartha Goswami 🔗 |
-
|
Monitoring a High-Arctic food web from space with machine learning
(
Poster
)
>
|
· Éliane Duchesne · Marie-Christine Cadieux · Gilles Gauthier · Joël Bêty · Pierre Legagneux · Audrey Durand 🔗 |
-
|
Explaining Unsupervised Detections of Natural Hazards from Multispectral Satellite Image Time-Series
(
Poster
)
>
|
Srija Chakraborty 🔗 |
-
|
Geospatial Deep Learning Technique to Detect and Classify Geo-structure Failures in Mississippi
(
Poster
)
>
|
Rakesh Salunke · Mohammad Sadik Khan 🔗 |