Poster
in
Workshop: From Molecules to Materials: ICLR 2023 Workshop on Machine learning for materials (ML4Materials)
Compositional and elemental descriptors for perovskite materials
Jiri Hostas · Maicon Lourenço · John Garcia · Hatef Shahmohamadi · Alain Tchagang · Karthik Shankar · Venkataraman Thangadurai · Dennis Salahub
Abstract:
In this extended abstract we compare the performance of different families of descriptors – \textit{molar composition descriptor, weight composition descriptor and elemental descriptor} – for regression tasks and include examples of a classification task for perovskite oxide materials with general formulas $ABO_3$, $A_2BB’O_6$, and $A_xA’_{1-x}B_yB’_{1-y}O_6$. The best performance was observed for our elemental descriptor which consisted of $A$-site and $B$-site element information on: Shannon’s ionic radius, ideal bond length, electronegativity, van der Waals radius, ionization energy, molar volume, atomic number, and atomic mass. The weight composition descriptor showed superior results over a simpler molar composition descriptor. The results of principal component analysis, regression models with the hyperparameters optimized using an autoML software and Wasserstein autoencoders are briefly discussed for a possible use in inverse materials design.
Chat is not available.