Skip to yearly menu bar Skip to main content


Invited Talk
in
Workshop: Neurosymbolic Generative Models (NeSy-GeMs)

AI can learn from data. But can it learn to reason?

Guy Van den Broeck


Abstract:

Many expect that AI will go from powering chatbots to providing mental health services. That it will go from advertisement to deciding who is given bail. The expectation is that AI will solve society’s problems by simply being more intelligent than we are. Implicit in this bullish perspective is the assumption that AI will naturally learn to reason from data: that it can form trains of thought that make sense, similar to how a mental health professional or judge might reason about a case, or more formally, how a mathematician might prove a theorem. This talk will investigate the question whether this behavior can be learned from data, and how we can design the next generation of AI techniques that can achieve such capabilities, focusing on constrained language generation, neuro-symbolic learning and tractable deep generative models.

Chat is not available.