Poster
in
Workshop: ICLR 2023 Workshop on Machine Learning for Remote Sensing
Remote Control: Debiasing Remote Sensing Predictions for Causal Inference
Megan Ayers · Eliana Stone
Understanding and properly estimating the impacts of environmental interventions is of critical importance as we work towards achieving global climate goals. Advances in machine learning paired with the growth of accessible satellite imagery have led to increased utilization of remotely sensed measures when inferring the impact of a policy. However, when machine learning models simply minimize a standard loss function, the predictions that they generate can produce biased estimates in downstream causal inference. If prediction error in the outcome variable is correlated with policy variables or important confounders, as is the case for many widely used remote sensing data sets, estimates of the causal impacts of policies can be biased. In this paper, we demonstrate how this bias can arise, and we propose the use of an adversarial debiasing model (Zhang, Lemoine, and Mitchell 2018) in order to correct the issue when using satellite datato generate machine learning predictions for use in causal inference. We apply this method to a case study of the relationship between roads and tree cover in West Africa, where our results indicate that adversarial debiasing can recover a much more accurate estimate of the parameter of interest compared to when the standard approach is used.