Virtual presentation / poster accept
Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis
Weixi Feng · Xuehai He · Tsu-Jui Fu · Varun Jampani · Arjun Akula · Pradyumna Narayana · S Basu · Xin Wang · William Wang
Keywords: [ Diffusion Models ] [ text-to-image synthesis ] [ Compositional Generation ] [ Applications ]
Large-scale diffusion models have achieved state-of-the-art results on text-to-image synthesis (T2I) tasks. Despite their ability to generate high-quality yet creative images, we observe that attribution-binding and compositional capabilities are still considered major challenging issues, especially when involving multiple objects. Attribute-binding requires the model to associate objects with the correct attribute descriptions, and compositional skills require the model to combine and generate multiple concepts into a single image. In this work, we improve these two aspects of T2I models to achieve more accurate image compositions. To do this, we incorporate linguistic structures with the diffusion guidance process based on the controllable properties of manipulating cross-attention layers in diffusion-based T2I models. We observe that keys and values in cross-attention layers have strong semantic meanings associated with object layouts and content. Therefore, by manipulating the cross-attention representations based on linguistic insights, we can better preserve the compositional semantics in the generated image. Built upon Stable Diffusion, a SOTA T2I model, our structured cross-attention design is efficient that requires no additional training samples. We achieve better compositional skills in qualitative and quantitative results, leading to a significant 5-8\% advantage in head-to-head user comparison studies. Lastly, we conduct an in-depth analysis to reveal potential causes of incorrect image compositions and justify the properties of cross-attention layers in the generation process.