Virtual presentation / poster accept
Diffusion-GAN: Training GANs with Diffusion
Zhendong Wang · Huangjie Zheng · Pengcheng He · Weizhu Chen · Mingyuan Zhou
Keywords: [ adaptive data augmentation ] [ data-efficient stable GAN training ] [ deep generative models ] [ Diffusion Models ] [ Generative models ]
Generative adversarial networks (GANs) are challenging to train stably, and a promising remedy of injecting instance noise into the discriminator input has not been very effective in practice. In this paper, we propose Diffusion-GAN, a novel GAN framework that leverages a forward diffusion chain to generate Gaussian-mixture distributed instance noise. Diffusion-GAN consists of three components, including an adaptive diffusion process, a diffusion timestep-dependent discriminator, and a generator. Both the observed and generated data are diffused by the adaptive diffusion process via different noise-to-data ratios at each timestep. The timestep-dependent discriminator learns to distinguish the diffused real data from the diffused generated data at each diffusion timestep. The generator learns from the discriminator's feedback by backpropagating through the forward diffusion chain, whose length is adaptively adjusted to balance the noise and data levels. We theoretically show that the discriminator's timestep-dependent strategy gives consistent and helpful guidance to the generator, enabling it to match the true data distribution. We demonstrate the advantages of Diffusion-GAN over strong GAN baselines on various datasets, showing that it can produce more realistic images with higher stability and data efficiency than state-of-the-art GANs.