Skip to yearly menu bar Skip to main content


Virtual presentation / top 25% paper

Learning Fair Graph Representations via Automated Data Augmentations

Hongyi Ling · Zhimeng Jiang · Youzhi Luo · Shuiwang Ji · Na Zou

Keywords: [ Social Aspects of Machine Learning ]


Abstract:

We consider fair graph representation learning via data augmentations. While this direction has been explored previously, existing methods invariably rely on certain assumptions on the properties of fair graph data in order to design fixed strategies on data augmentations. Nevertheless, the exact properties of fair graph data may vary significantly in different scenarios. Hence, heuristically designed augmentations may not always generate fair graph data in different application scenarios. In this work, we propose a method, known as Graphair, to learn fair representations based on automated graph data augmentations. Such fairness-aware augmentations are themselves learned from data. Our Graphair is designed to automatically discover fairness-aware augmentations from input graphs in order to circumvent sensitive information while preserving other useful information. Experimental results demonstrate that our Graphair consistently outperforms many baselines on multiple node classification datasets in terms of fairness-accuracy trade-off performance. In addition, results indicate that Graphair can automatically learn to generate fair graph data without prior knowledge on fairness-relevant graph properties.

Chat is not available.