Skip to yearly menu bar Skip to main content


In-Person Poster presentation / top 25% paper

ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion

Aleksandar Pavlović · Emanuel Sallinger

MH1-2-3-4 #20

Keywords: [ knowledge graph embedding ] [ knowledge graph completion ] [ geometric interpretation ] [ Composition ] [ hierarchy ] [ Deep Learning and representational learning ]


Abstract: Knowledge graphs are inherently incomplete. Therefore substantial research has been directed toward knowledge graph completion (KGC), i.e., predicting missing triples from the information represented in the knowledge graph (KG). KG embedding models (KGEs) have yielded promising results for KGC, yet any current KGE is incapable of: (1) fully capturing vital inference patterns (e.g., composition), (2) capturing prominent patterns jointly (e.g., hierarchy and composition), and (3) providing an intuitive interpretation of captured patterns. In this work, we propose ExpressivE, a fully expressive spatio-functional KGE that solves all these challenges simultaneously. ExpressivE embeds pairs of entities as points and relations as hyper-parallelograms in the virtual triple space $\mathbb{R}^{2d}$. This model design allows ExpressivE not only to capture a rich set of inference patterns jointly but additionally to display any supported inference pattern through the spatial relation of hyper-parallelograms, offering an intuitive and consistent geometric interpretation of ExpressivE embeddings and their captured patterns. Experimental results on standard KGC benchmarks reveal that ExpressivE is competitive with state-of-the-art KGEs and even significantly outperforms them on WN18RR.

Chat is not available.