Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Sequential Learning of Neural Networks for Prequential MDL

Jorg Bornschein · Yazhe Li · Marcus Hutter

Keywords: [ continual-learning ] [ deep-learning ] [ mdl ] [ Deep Learning and representational learning ]


Abstract:

Minimum Description Length (MDL) provides a framework and an objective for principled model evaluation. It formalizes Occam's Razor and can be applied to data from non-stationary sources. In the prequential formulation of MDL, the objective is to minimize the cumulative next-step log-loss when sequentially going through the data and using previous observations for parameter estimation. It thus closely resembles a continual- or online-learning problem. In this study, we evaluate approaches for computing prequential description lengths for image classification datasets with neural networks. Considering the computational cost, we find that online-learning with rehearsal has favorable performance compared to the previously widely used block-wise estimation. We propose forward-calibration to better align the models predictions with the empirical observations and introduce replay-streams, a minibatch incremental training technique to efficiently implement approximate random replay while avoiding large in-memory replay buffers. As a result, we present description lengths for a suite of image classification datasets that improve upon previously reported results by large margins.

Chat is not available.