Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Transformer-Patcher: One Mistake Worth One Neuron

Zeyu Huang · Yikang Shen · Xiaofeng Zhang · Jie Zhou · Wenge Rong · Zhang Xiong

Keywords: [ Sequential Model Editing ] [ Applications ]


Abstract:

Large Transformer-based Pretrained Language Models (PLMs) dominate almost all Natural Language Processing (NLP) tasks. Nevertheless, they still make mistakes from time to time. For a model deployed in an industrial environment, fixing these mistakes quickly and robustly is vital to improve user experiences. Previous works formalize such problems as Model Editing (ME) and mostly focus on fixing one mistake. However, the one-mistake-fixing scenario is not an accurate abstraction of the real-world challenge. In the deployment of AI services, there are ever-emerging mistakes, and the same mistake may recur if not corrected in time. Thus a preferable solution is to rectify the mistakes as soon as they appear nonstop. Therefore, we extend the existing ME into the Sequential Model Editing (SME) to help develop more practical editing methods. Our study shows that current ME methods either fail to make a sequence of edits or to remember previous edits. We then introduce Transformer-Patcher, a novel model editor that can shift the behavior of transformer-based models by simply adding and training a few neurons in the last Feed-Forward Network layer. Experimental results on both classification and generation tasks show that Transformer-Patcher can successively correct up to thousands of errors (Reliability) and generalize to their equivalent inputs (Generality) while retaining the model’s accuracy on irrelevant inputs (Locality). Our method outperforms previous fine-tuning and HyperNetwork-based methods and achieves state-of-the-art performance for Sequential Model Editing (SME).

Chat is not available.