Virtual presentation / poster accept
Cycle to Clique (Cy2C) Graph Neural Network: A Sight to See beyond Neighborhood Aggregation
YunYoung Choi · Sun Woo Park · Youngho Woo · U Jin Choi
Keywords: [ Deep Learning and representational learning ]
Graph neural networks have been successfully adapted for learning vector representations of graphs through various neighborhood aggregation schemes. Previous researches suggest, however, that they possess limitations in incorporating key non-Euclidean topological properties of graphs. This paper mathematically identifies the caliber of graph neural networks in classifying isomorphism classes of graphs with continuous node attributes up to their local topological properties. In light of these observations, we construct the Cycle to Clique graph neural network, a novel yet simple algorithm which topologically enriches the input data of conventional graph neural networks while preserving their architectural components. This method theoretically outperforms conventional graph neural networks in classifying isomorphism classes of graphs while ensuring comparable time complexity in representing random graphs. Empirical results further support that the novel algorithm produces comparable or enhanced results in classifying benchmark graph data sets compared to contemporary variants of graph neural networks.