In-Person Poster presentation / top 25% paper
One-Pixel Shortcut: On the Learning Preference of Deep Neural Networks
Shutong Wu · Sizhe Chen · Cihang Xie · Xiaolin Huang
MH1-2-3-4 #21
Keywords: [ shortcut learning ] [ one-pixel feature ] [ Unlearnable Examples ] [ deep neural network ] [ Deep Learning and representational learning ]
Abstract:
Unlearnable examples (ULEs) aim to protect data from unauthorized usage for training DNNs. Existing work adds $\ell_\infty$-bounded perturbations to the original sample so that the trained model generalizes poorly. Such perturbations, however, are easy to eliminate by adversarial training and data augmentations. In this paper, we resolve this problem from a novel perspective by perturbing only one pixel in each image. Interestingly, such a small modification could effectively degrade model accuracy to almost an untrained counterpart. Moreover, our produced \emph{One-Pixel Shortcut (OPS)} could not be erased by adversarial training and strong augmentations. To generate OPS, we perturb in-class images at the same position to the same target value that could mostly and stably deviate from all the original images. Since such generation is only based on images, OPS needs significantly less computation cost than the previous methods using DNN generators. Based on OPS, we introduce an unlearnable dataset called CIFAR-10-S, which is indistinguishable from CIFAR-10 by humans but induces the trained model to extremely low accuracy. Even under adversarial training, a ResNet-18 trained on CIFAR-10-S has only 10.61% accuracy, compared to 83.02% by the existing error-minimizing method.
Chat is not available.