Skip to yearly menu bar Skip to main content


Virtual presentation / top 25% paper

Vision Transformer Adapter for Dense Predictions

Zhe Chen · Yuchen Duan · Wenhai Wang · Junjun He · Tong Lu · Jifeng Dai · Yu Qiao

Keywords: [ Adapter ] [ Dense Prediction ] [ Plain Vision Transformer ] [ Applications ]


Abstract:

This work investigates a simple yet powerful dense prediction task adapter for Vision Transformer (ViT). Unlike recently advanced variants that incorporate vision-specific inductive biases into their architectures, the plain ViT suffers inferior performance on dense predictions due to weak prior assumptions. To address this issue, we propose the ViT-Adapter, which allows plain ViT to achieve comparable performance to vision-specific transformers. Specifically, the backbone in our framework is a plain ViT that can learn powerful representations from large-scale multi-modal data. When transferring to downstream tasks, a pre-training-free adapter is used to introduce the image-related inductive biases into the model, making it suitable for these tasks. We verify ViT-Adapter on multiple dense prediction tasks, including object detection, instance segmentation, and semantic segmentation. Notably, without using extra detection data, our ViT-Adapter-L yields state-of-the-art 60.9 box AP and 53.0 mask AP on COCO test-dev. We hope that the ViT-Adapter could serve as an alternative for vision-specific transformers and facilitate future research. Code and models will be released at https://github.com/czczup/ViT-Adapter.

Chat is not available.