Virtual presentation / poster accept
Cycle-consistent Masked AutoEncoder for Unsupervised Domain Generalization
Haiyang Yang · Xiaotong Li · SHIXIANG TANG · Feng Zhu · Yizhou Wang · Meilin Chen · LEI BAI · Rui Zhao · Wanli Ouyang
Keywords: [ Unsupervised and Self-supervised learning ]
Abstract:
Self-supervised learning methods undergo undesirable performance drops when there exists a significant domain gap between training and testing scenarios. Therefore, unsupervised domain generalization (UDG) is proposed to tackle the problem, which requires the model to be trained on several different domains without supervision and generalize well on unseen test domains. Existing methods either rely on a cross-domain and semantically consistent image pair in contrastive methods or the reconstruction pair in generative methods, while the precious image pairs are not available without semantic labels. In this paper, we propose a cycle cross-domain reconstruction task for unsupervised domain generalization in the absence of paired images. The cycle cross-domain reconstruction task converts a masked image from one domain to another domain and then reconstructs the original image from the converted images. To preserve the divergent domain knowledge of decoders in the cycle reconstruction task, we propose a novel domain-contrastive loss to regularize the domain information in reconstructed images encoded with the desirable domain style. Qualitative results on extensive datasets illustrate our method improves the state-of-the-art unsupervised domain generalization methods by average $\textbf{+5.59\%}, \textbf{+4.52\%}, \textbf{+4.22\%}, \textbf{+7.02\%}$ on $1\%, 5\%, 10\%, 100\%$ PACS, and $\textbf{+5.08\%}, \textbf{+6.49\%}, \textbf{+1.79\%}, \textbf{+0.53\%}$ on $1\%, 5\%, 10\%, 100\%$ DomainNet, respectively.
Chat is not available.