Session
Oral 4 Track 3: Reinforcement Learning I
AD12
Planning Goals for Exploration
Edward Hu · Richard Chang · Oleh Rybkin · Dinesh Jayaraman
Dropped into an unknown environment, what should an agent do to quickly learn about the environment and how to accomplish diverse tasks within it? We address this question within the goal-conditioned reinforcement learning paradigm, by identifying how the agent should set its goals at training time to maximize exploration. We propose "Planning Exploratory Goals" (PEG), a method that sets goals for each training episode to directly optimize an intrinsic exploration reward. PEG first chooses goal commands such that the agent's goal-conditioned policy, at its current level of training, will end up in states with high exploration potential. It then launches an exploration policy starting at those promising states. To enable this direct optimization, PEG learns world models and adapts sampling-based planning algorithms to "plan goal commands". In challenging simulated robotics environments including a multi-legged ant robot in a maze, and a robot arm on a cluttered tabletop, PEG exploration enables more efficient and effective training of goal-conditioned policies relative to baselines and ablations. Our ant successfully navigates a long maze, and the robot arm successfully builds a stack of three blocks upon command. Website: https://sites.google.com/view/exploratory-goals
Outcome-directed Reinforcement Learning by Uncertainty \& Temporal Distance-Aware Curriculum Goal Generation
Daesol Cho · Seungjae Lee · H. Kim
Current reinforcement learning (RL) often suffers when solving a challenging exploration problem where the desired outcomes or high rewards are rarely observed. Even though curriculum RL, a framework that solves complex tasks by proposing a sequence of surrogate tasks, shows reasonable results, most of the previous works still have difficulty in proposing curriculum due to the absence of a mechanism for obtaining calibrated guidance to the desired outcome state without any prior domain knowledge. To alleviate it, we propose an uncertainty \& temporal distance-aware curriculum goal generation method for the outcome-directed RL via solving a bipartite matching problem. It could not only provide precisely calibrated guidance of the curriculum to the desired outcome states but also bring much better sample efficiency and geometry-agnostic curriculum goal proposal capability compared to previous curriculum RL methods. We demonstrate that our algorithm significantly outperforms these prior methods in a variety of challenging navigation tasks and robotic manipulation tasks in a quantitative and qualitative way.
Pink Noise Is All You Need: Colored Noise Exploration in Deep Reinforcement Learning
Onno Eberhard · Jakob Hollenstein · Cristina Pinneri · Georg Martius
In off-policy deep reinforcement learning with continuous action spaces, exploration is often implemented by injecting action noise into the action selection process. Popular algorithms based on stochastic policies, such as SAC or MPO, inject white noise by sampling actions from uncorrelated Gaussian distributions. In many tasks, however, white noise does not provide sufficient exploration, and temporally correlated noise is used instead. A common choice is Ornstein-Uhlenbeck (OU) noise, which is closely related to Brownian motion (red noise). Both red noise and white noise belong to the broad family of colored noise. In this work, we perform a comprehensive experimental evaluation on MPO and SAC to explore the effectiveness of other colors of noise as action noise. We find that pink noise, which is halfway between white and red noise, significantly outperforms white noise, OU noise, and other alternatives on a wide range of environments. Thus, we recommend it as the default choice for action noise in continuous control.
Benchmarking Offline Reinforcement Learning on Real-Robot Hardware
Nico Gürtler · Sebastian Blaes · Pavel Kolev · Felix Widmaier · Manuel Wuthrich · Stefan Bauer · Bernhard Schoelkopf · Georg Martius
Learning policies from previously recorded data is a promising direction for real-world robotics tasks, as online learning is often infeasible. Dexterous manipulation in particular remains an open problem in its general form. The combination of offline reinforcement learning with large diverse datasets, however, has the potential to lead to a breakthrough in this challenging domain analogously to the rapid progress made in supervised learning in recent years. To coordinate the efforts of the research community toward tackling this problem, we propose a benchmark including: i) a large collection of data for offline learning from a dexterous manipulation platform on two tasks, obtained with capable RL agents trained in simulation; ii) the option to execute learned policies on a real-world robotic system and a simulation for efficient debugging. We evaluate prominent open-sourced offline reinforcement learning algorithms on the datasets and provide a reproducible experimental setup for offline reinforcement learning on real systems.
Choreographer: Learning and Adapting Skills in Imagination
Pietro Mazzaglia · Tim Verbelen · Bart Dhoedt · Alexandre Lacoste · Sai Rajeswar
Unsupervised skill learning aims to learn a rich repertoire of behaviors without external supervision, providing artificial agents with the ability to control and influence the environment. However, without appropriate knowledge and exploration, skills may provide control only over a restricted area of the environment, limiting their applicability. Furthermore, it is unclear how to leverage the learned skill behaviors for adapting to downstream tasks in a data-efficient manner. We present Choreographer, a model-based agent that exploits its world model to learn and adapt skills in imagination. Our method decouples the exploration and skill learning processes, being able to discover skills in the latent state space of the model. During adaptation, the agent uses a meta-controller to evaluate and adapt the learned skills efficiently by deploying them in parallel in imagination. Choreographer is able to learn skills both from offline data, and by collecting data simultaneously with an exploration policy. The skills can be used to effectively adapt to downstream tasks, as we show in the URL benchmark, where we outperform previous approaches from both pixels and states inputs. The skills also explore the environment thoroughly, finding sparse rewards more frequently, as shown in goal-reaching tasks from the DMC Suite and Meta-World. Project website: https://skillchoreographer.github.io/
A CMDP-within-online framework for Meta-Safe Reinforcement Learning
Vanshaj Khattar · Yuhao Ding · Bilgehan Sel · Javad Lavaei · Ming Jin
Meta-reinforcement learning has widely been used as a learning-to-learn framework to solve unseen tasks with limited experience. However, the aspect of constraint violations has not been adequately addressed in the existing works, making their application restricted in real-world settings. In this paper, we study the problem of meta-safe reinforcement learning (meta-SRL) through the CMDP-within-online framework. We obtain task-averaged regret guarantees for the reward maximization (optimality gap) and constraint violations using gradient-based meta-learning and show that the task-averaged optimality gap and constraint satisfaction improve with task-similarity in the static environment, or task-relatedness in the changing environment. Several technical challenges arise when making this framework practical while still having strong theoretical guarantees. To address these challenges, we propose a meta-algorithm that performs inexact online learning on the upper bounds of intra-task optimality gap and constraint violations estimated by off-policy stationary distribution corrections. Furthermore, we enable the learning rates to be adapted for every task and extend our approach to settings with the dynamically changing task environments. Finally, experiments are conducted to demonstrate the effectiveness of our approach. The proposed theoretical framework is the first to handle the nonconvexity and stochastic nature of within-task CMDPs, while exploiting inter-task dependency for multi-task safe learning.
Confidence-Conditioned Value Functions for Offline Reinforcement Learning
Joey Hong · Aviral Kumar · Sergey Levine
Offline reinforcement learning (RL) promises the ability to learn effective policies solely using existing, static datasets, without any costly online interaction. To do so, offline RL methods must handle distributional shift between the dataset and the learned policy. The most common approach is to learn conservative, or lower-bound, value functions, which underestimate the return of OOD actions. However, such methods exhibit one notable drawback: policies optimized on such value functions can only behave according to a fixed, possibly suboptimal, degree of conservatism. However, this can be alleviated if we instead are able to learn policies for varying degrees of conservatism at training time and devise a method to dynamically choose one of them during evaluation. To do so, in this work, we propose learning value functions that additionally condition on the degree of conservatism, which we dub confidence-conditioned value functions. We derive a new form of a Bellman backup that simultaneously learns Q-values for any degree of confidence with high probability. By conditioning on confidence, our value functions enable adaptive strategies during online evaluation by controlling for confidence level using the history of observations thus far. This approach can be implemented in practice by conditioning the Q-function from existing conservative algorithms on the confidence. We theoretically show that our learned value functions produce conservative estimates of the true value at any desired confidence. Finally, we empirically show that our algorithm outperforms existing conservative offline RL algorithms on multiple discrete control domains.
Extreme Q-Learning: MaxEnt RL without Entropy
Divyansh Garg · Joey Hejna · Matthieu Geist · Stefano Ermon
Modern Deep Reinforcement Learning (RL) algorithms require estimates of the maximal Q-value, which are difficult to compute in continuous domains with an infinite number of possible actions. In this work, we introduce a new update rule for online and offline RL which directly models the maximal value using Extreme Value Theory (EVT), drawing inspiration from economics. By doing so, we avoid computing Q-values using out-of-distribution actions which is often a substantial source of error. Our key insight is to introduce an objective that directly estimates the optimal soft-value functions (LogSumExp) in the maximum entropy RL setting without needing to sample from a policy. Using EVT, we derive our \emph{Extreme Q-Learning} framework and consequently online and, for the first time, offline MaxEnt Q-learning algorithms, that do not explicitly require access to a policy or its entropy. Our method obtains consistently strong performance in the D4RL benchmark, outperforming prior works by \emph{10+ points} on the challenging Franka Kitchen tasks while offering moderate improvements over SAC and TD3 on online DM Control tasks. Visualizations and code can be found on our website.