Workshop
Physics for Machine Learning
T. Konstantin Rusch · Aditi Krishnapriyan · Emmanuel de Bézenac · Ben Chamberlain · Elise van der Pol · Patrick Kidger
MH1
Thu 4 May, midnight PDT
Combining physics with machine learning is a rapidly growing field of research. Thus far, most of the work in this area focuses on leveraging recent advances in classical machine learning to solve problems that arise in the physical sciences. In this workshop, we wish to focus on a slightly less established topic, which is the converse: exploiting structures (or symmetries) of physical systems as well as insights developed in physics to construct novel machine learning methods and gain a better understanding of such methods. A particular focus will be on the synergy between the scientific problems and machine learning and incorporating structure of these problems into the machine learning methods which are used in that context. However, the scope of application of those models is not limited to problems in the physical sciences and can be applied even more broadly to standard machine learning problems, e.g. in computer vision, natural language processing or speech recognition.
Schedule
Thu 12:00 a.m. - 12:15 a.m.
|
Introduction and opening remarks
(
Introduction
)
>
SlidesLive Video |
T. Konstantin Rusch 🔗 |
Thu 12:15 a.m. - 12:40 a.m.
|
Physics-inspired learning on graphs
(
Invited talk
)
>
SlidesLive Video |
Michael Bronstein 🔗 |
Thu 12:40 a.m. - 12:45 a.m.
|
Q&A
(
In-person Q&A
)
>
|
Michael Bronstein 🔗 |
Thu 12:45 a.m. - 12:55 a.m.
|
Multi-Scale Message Passing Neural PDE Solvers
(
Spotlight presentation
)
>
SlidesLive Video |
Léonard Equer 🔗 |
Thu 12:55 a.m. - 1:00 a.m.
|
Q&A
(
In-person Q&A
)
>
|
Léonard Equer 🔗 |
Thu 1:00 a.m. - 2:00 a.m.
|
Poster session 1
(
Poster session
)
>
|
🔗 |
Thu 2:00 a.m. - 2:30 a.m.
|
Coffee break
|
🔗 |
Thu 2:30 a.m. - 2:55 a.m.
|
Learned Models for Physical Simulation and Design
(
Invited talk
)
>
|
Kimberly Stachenfeld 🔗 |
Thu 2:55 a.m. - 3:00 a.m.
|
Q&A
(
Zoom Q&A
)
>
|
Kimberly Stachenfeld 🔗 |
Thu 3:00 a.m. - 3:10 a.m.
|
Semi-Equivariant Conditional Normalizing Flows
(
Spotlight presentation
)
>
|
Eyal Rozenberg 🔗 |
Thu 3:10 a.m. - 3:15 a.m.
|
Q&A
(
Zoom Q&A
)
>
|
Eyal Rozenberg 🔗 |
Thu 3:15 a.m. - 5:00 a.m.
|
Lunch break
|
🔗 |
Thu 5:00 a.m. - 5:25 a.m.
|
Physics Inspired Machine Learning
(
Invited talk
)
>
SlidesLive Video |
Siddhartha Mishra 🔗 |
Thu 5:25 a.m. - 5:30 a.m.
|
Q&A
(
Zoom Q&A
)
>
|
Siddhartha Mishra 🔗 |
Thu 5:30 a.m. - 5:40 a.m.
|
Neural Networks Learn Representation Theory: Reverse Engineering how Networks Perform Group Operations
(
Spotlight presentation
)
>
SlidesLive Video |
Bilal Chughtai 🔗 |
Thu 5:40 a.m. - 5:45 a.m.
|
Q&A
(
Zoom Q&A
)
>
|
Bilal Chughtai 🔗 |
Thu 5:45 a.m. - 6:45 a.m.
|
Poster session 2
(
Poster session
)
>
|
🔗 |
Thu 6:45 a.m. - 7:15 a.m.
|
Coffee break
|
🔗 |
Thu 7:15 a.m. - 7:40 a.m.
|
Bridging Biophysics and AI to Optimize Biology
(
Invited talk
)
>
SlidesLive Video |
Ava Soleimany 🔗 |
Thu 7:40 a.m. - 7:45 a.m.
|
Q&A
(
Zoom Q&A
)
>
|
Ava Soleimany 🔗 |
Thu 7:45 a.m. - 7:55 a.m.
|
Latent SDEs for Modelling Quasar Variability and Inferring Black Hole Properties
(
Spotlight presentation
)
>
SlidesLive Video |
Joshua Fagin 🔗 |
Thu 7:55 a.m. - 8:00 a.m.
|
Q&A
(
Zoom Q&A
)
>
|
Joshua Fagin 🔗 |
Thu 8:00 a.m. - 8:25 a.m.
|
Scaling laws for deep neural networks: driving theory and understanding through experimental insights
(
Invited talk
)
>
SlidesLive Video |
Yasaman Bahri 🔗 |
Thu 8:25 a.m. - 8:30 a.m.
|
Q&A
(
Zoom Q&A
)
>
|
Yasaman Bahri 🔗 |
Thu 8:30 a.m. - 8:45 a.m.
|
Learning protein family manifolds with smoothed energy-based models
(
Spotlight presentation
)
>
SlidesLive Video |
Nathan Frey 🔗 |
Thu 8:45 a.m. - 9:00 a.m.
|
Closing remarks
(
Closing remarks
)
>
SlidesLive Video |
T. Konstantin Rusch 🔗 |
-
|
The END: An Equivariant Neural Decoder for Quantum Error Correction ( Poster ) > link | Evgenii Egorov · Roberto Bondesan · Max Welling 🔗 |
-
|
Physics-driven machine learning models coupling PyTorch and Firedrake ( Poster ) > link | Nacime Bouziani · David Ham 🔗 |
-
|
E($3$) Equivariant Graph Neural Networks for Particle-Based Fluid Mechanics ( Poster ) > link | Artur Toshev · Gianluca Galletti · Johannes Brandstetter · Stefan Adami · Nikolaus Adams 🔗 |
-
|
$\mathrm{SE}(3)$ Frame Equivariance in Dynamics Modeling and Reinforcement Learning ( Poster ) > link | Linfeng Zhao · Jung Yeon Park · Xupeng Zhu · Robin Walters · Lawson Wong 🔗 |
-
|
Learning the Dynamics of Physical Systems with Hamiltonian Graph Neural Networks ( Poster ) > link | Suresh Bishnoi · Ravinder Bhattoo · Jayadeva Jayadeva · Sayan Ranu · N. M. Anoop Krishnan 🔗 |
-
|
Latent Sequence Generation of Steered Molecular Dynamics ( Poster ) > link | John Kevin Cava · Ankita Shukla · John Vant · Shubhra Kanti Karmaker Santu · Pavan Turaga · Ross Maciejewski · Abhishek Singharoy 🔗 |
-
|
Geometric constraints improve inference of sparsely observed stochastic dynamics ( Poster ) > link | Dimitra Maoutsa 🔗 |
-
|
Fast computation of permutation equivariant layers with the partition algebra ( Poster ) > link | Charles Godfrey · Michael Rawson · Davis Brown · Henry Kvinge 🔗 |
-
|
Predicting Fluid Dynamics in Physical-informed Mesh-reduced Space ( Poster ) > link | Yeping Hu · Bo Lei · Victor Castillo 🔗 |
-
|
Scientific Computing Algorithms to Learn Enhanced Scalable Surrogates for Mesh Physics ( Poster ) > link | Brian Bartoldson · Yeping Hu · Amar Saini · Jose Cadena · Yucheng Fu · Jie Bao · Zhijie Xu · Brenda Ng · Phan Nguyen 🔗 |
-
|
Latent Stochastic Differential Equations for Modeling Quasar Variability and Inferring Black Hole Properties ( Poster ) > link | Joshua Fagin · Ji Won Park · Henry Best · Matt O'Dowd 🔗 |
-
|
Multilevel Approach to Efficient Gradient Calculation in Stochastic Systems ( Poster ) > link | Joohwan Ko · Michael Poli · Stefano Massaroli · Woo Chang Kim 🔗 |
-
|
Studying Phase Transitions in Contrastive Learning With Physics-Inspired Datasets ( Poster ) > link | Ali Cy · Anugrah Chemparathy · Michael Han · Rumen R Dangovski · Peter Lu · Marin Soljacic 🔗 |
-
|
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations ( Poster ) > link | Grégoire Mialon · Quentin Garrido · Hannah Lawrence · Danyal Rehman · Yann LeCun · Bobak Kiani 🔗 |
-
|
Lorentz Group Equivariant Autoencoders ( Poster ) > link | Zichun Hao · Raghav Kansal · Javier Duarte · Nadya Chernyavskaya 🔗 |
-
|
Relational Macrostate Theory Guides Artificial Intelligence to Learn Macro and Design Micro ( Poster ) > link | Yanbo Zhang · Sara Walker 🔗 |
-
|
Emulating Radiation Transport on Cosmological Scales using a Denoising U-Net ( Poster ) > link | Mosima Masipa · Hassan · Mario Santos · Kyunghyun Cho · Gabriella Contardo 🔗 |
-
|
Learning to Suggest Breaks: Sustainable Optimization of Long-Term User Engagement ( Poster ) > link | Eden Saig · Nir Rosenfeld 🔗 |
-
|
Learning protein family manifolds with smoothed energy-based models ( Poster ) > link |
14 presentersNathan Frey · Dan Berenberg · Joseph Kleinhenz · Isidro Hotzel · Julien Lafrance-Vanasse · Ryan Kelly · Yan Wu · Arvind Rajpal · Stephen Ra · Richard Bonneau · Kyunghyun Cho · Andreas Loukas · Vladimir Gligorijevic · Saeed Saremi |
-
|
Nature's Cost Function: Simulating Physics by Minimizing the Action ( Poster ) > link | Samuel Greydanus · Timothy Strang · Isabella Caruso 🔗 |
-
|
Symbolic Regression for PDEs using Pruned Differentiable Programs ( Poster ) > link | Ritam Majumdar · Vishal Jadhav · Anirudh Deodhar · Shirish Karande · Lovekesh Vig · Venkataramana Runkana 🔗 |
-
|
Gaussian processes at the Helm(holtz): A more fluid model for ocean currents ( Poster ) > link | Renato Berlinghieri · Brian Trippe · David Burt · Ryan Giordano · Kaushik Srinivasan · Tamay Özgökmen · Junfei Zia · Tamara Broderick 🔗 |
-
|
Grounding Graph Network Simulators using Physical Sensor Observations ( Poster ) > link | Jonas Linkerhägner · Niklas Freymuth · Paul Maria Scheikl · Franziska Mathis-Ullrich · Gerhard Neumann 🔗 |
-
|
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning ( Poster ) > link | S Chandra Mouli · Muhammad Alam · Bruno Ribeiro 🔗 |
-
|
Learning to Initiate and Reason in Event-Driven Cascading Processes ( Poster ) > link | Yuval Atzmon · Eli Meirom · Shie Mannor · Gal Chechik 🔗 |
-
|
Expressive Sign Equivariant Networks for Spectral Geometric Learning ( Poster ) > link | Derek Lim · Joshua Robinson · Stefanie Jegelka · Yaron Lipman · Haggai Maron 🔗 |
-
|
Invertible mapping between fields in CAMELS ( Poster ) > link | Sambatra Andrianomena · Hassan · Francisco Villaescusa-Navarro 🔗 |
-
|
Swarm Reinforcement Learning for Adaptive Mesh Refinement ( Poster ) > link | Niklas Freymuth · Philipp Dahlinger · Tobias Würth · Luise Kärger · Gerhard Neumann 🔗 |
-
|
Stability of implicit neural networks for long-term forecasting in dynamical systems ( Poster ) > link | Léon Migus · Julien Salomon · patrick gallinari 🔗 |
-
|
Practical implications of equivariant and invariant graph neural networks for fluid flow modeling ( Poster ) > link | Varun Shankar · Shivam Barwey · Romit Maulik · Venkat Viswanathan 🔗 |
-
|
Model-based Unknown Input Estimation via Partially Observable Markov Decision Processes ( Poster ) > link | Wei Liu · Zhilu Lai · Charikleia Stoura · Kiran Bacsa · Eleni Chatzi 🔗 |
-
|
Probing optimisation in physics-informed neural networks ( Poster ) > link | Nayara Fonseca · Veronica Guidetti · Will Trojak 🔗 |
-
|
How Deep Convolutional Neural Networks lose Spatial Information with training ( Poster ) > link | Umberto Tomasini · Leonardo Petrini · Francesco Cagnetta · Matthieu Wyart 🔗 |
-
|
OPERATOR LEARNING ON FREE-FORM GEOMETRIES ( Poster ) > link | Louis Serrano · Jean-Noël Vittaut · patrick gallinari 🔗 |
-
|
Neural Integral Functionals ( Poster ) > link | Zheyuan Hu · Tianbo Li · Zekun Shi · Kunhao Zheng · Giovanni Vignale · Kenji Kawaguchi · shuicheng YAN · Min Lin 🔗 |
-
|
Projections of Model Spaces for Latent Graph Inference ( Poster ) > link | Haitz Sáez de Ocáriz Borde · Alvaro Arroyo · Ingmar Posner 🔗 |
-
|
Quantum Feature Maps for Graph Machine Learning on a Neutral Atom Quantum Processor ( Poster ) > link |
13 presentersBoris Albrecht · Constantin Dalyac · Lucas Leclerc · Luis Ortiz-Gutiérrez · Slimane Thabet · Mauro D'Arcangelo · Vincent Elfving · Lucas Lassablière · Henrique Silvério · Bruno Ximenez · Louis-Paul Henry · Adrien Signoles · Loic Henriet |
-
|
Multi-Scale Message Passing Neural PDE Solvers ( Poster ) > link | Léonard Equer · T. Konstantin Rusch · Siddhartha Mishra 🔗 |
-
|
Noise Injection as a Probe of Deep Learning Dynamics ( Poster ) > link | Noam Levi · Itay Bloch · Marat Freytsis · Tomer Volansky 🔗 |
-
|
Discovering drag reduction strategies in wall-bounded turbulent flows using deep reinforcement learning ( Poster ) > link | Luca Guastoni · Jean Rabault · Philipp Schlatter · Ricardo Vinuesa · Hossein Azizpour 🔗 |
-
|
A Machine Learning Approach to Generate Quantum Light ( Poster ) > link |
11 presentersEyal Rozenberg · Aviv Karnieli · Ofir Yesharim · Joshua Foley-Comer · Sivan Trajtenberg-Mills · Sarika Mishra · Shashi Prabhakar · Ravindra Singh · Daniel Freedman · Alex Bronstein · Ady Arie |
-
|
THE RL PERCEPTRON: DYNAMICS OF POLICY LEARNING IN HIGH DIMENSIONS ( Poster ) > link | Nishil Patel · Sebastian Lee · Stefano Mannelli · Sebastian Goldt · Andrew Saxe 🔗 |
-
|
Towards an inductive bias for quantum statistics in GANs ( Poster ) > link | Hugo Wallner · William Clements 🔗 |
-
|
Stationary Deep Reinforcement Learning with Quantum K-spin Hamiltonian Regularization ( Poster ) > link | Xiao-Yang Liu · Zechu Li · Shixun Wu · Xiaodong Wang 🔗 |
-
|
PDEBENCH: AN EXTENSIVE BENCHMARK FOR SCI- ENTIFIC MACHINE LEARNING ( Poster ) > link | Makoto Takamoto · Timothy Praditia · Raphael Leiteritz · Dan MacKinlay · Francesco Alesiani · Dirk Pflüger · Mathias Niepert 🔗 |
-
|
Neural-prior stochastic block model ( Poster ) > link | O. Duranthon · Lenka Zdeborova 🔗 |
-
|
Convolutional Neural Operators ( Poster ) > link | Bogdan Raonic · Roberto Molinaro · Tobias Rohner · Siddhartha Mishra · Emmanuel de Bézenac 🔗 |
-
|
Neural Networks Learn Representation Theory: Reverse Engineering how Networks Perform Group Operations ( Poster ) > link | Bilal Chughtai · Lawrence Chan · Neel Nanda 🔗 |
-
|
Semi-Equivariant Conditional Normalizing Flows ( Poster ) > link | Eyal Rozenberg · Daniel Freedman 🔗 |
-
|
Invariant preservation in machine learned PDE solvers via error correction ( Poster ) > link | Nick McGreivy · Ammar Hakim 🔗 |
-
|
Denoising Diffusion Probabilistic Models to Predict the Number Density of Molecular Clouds in Astronomy ( Poster ) > link | Duo Xu · Jonathan Tan · Chia-Jung Hsu · Ye Zhu 🔗 |
-
|
PDExplain: Contextual Modeling of PDEs in the Wild ( Poster ) > link | Ori Linial · Orly Avner · Dotan Di Castro 🔗 |
-
|
Learning Physical Models that Can Respect Conservation Laws ( Poster ) > link | Derek Hansen · Danielle Maddix · Shima Alizadeh · Gaurav Gupta · Michael W Mahoney 🔗 |
-
|
Physics-constrained neural differential equations for learning multi-ionic transport ( Poster ) > link | Danyal Rehman · John Lienhard 🔗 |
-
|
Non-equispaced Fourier Neural Solvers for PDEs ( Poster ) > link | Haitao Lin · Lirong Wu · Yongjie Xu · Yufei Huang · Siyuan Li · Guojiang Zhao · Stan Z Li 🔗 |
-
|
Learning Deformation Trajectories of Boltzmann Densities ( Poster ) > link | Bálint Máté · François Fleuret 🔗 |
-
|
PHYSICS-INSPIRED INTERPRETABILITY OF MACHINE LEARNING MODELS ( Poster ) > link | Maximilian Niroomand · David Wales 🔗 |