Poster
DeLighT: Deep and Light-weight Transformer
Sachin Mehta · Marjan Ghazvininejad · Srini Iyer · Luke Zettlemoyer · Hannaneh Hajishirzi
Keywords: [ representation learning ] [ transformers ] [ sequence modeling ] [ machine translation ] [ language modeling ] [ Efficient Networks ]
We introduce a deep and light-weight transformer, DeLighT, that delivers similar or better performance than standard transformer-based models with significantly fewer parameters. DeLighT more efficiently allocates parameters both (1) within each Transformer block using the DeLighT transformation, a deep and light-weight transformation and (2) across blocks using block-wise scaling, that allows for shallower and narrower DeLighT blocks near the input and wider and deeper DeLighT blocks near the output. Overall, DeLighT networks are 2.5 to 4 times deeper than standard transformer models and yet have fewer parameters and operations. Experiments on benchmark machine translation and language modeling tasks show that DeLighT matches or improves the performance of baseline Transformers with 2 to 3 times fewer parameters on average.