Skip to yearly menu bar Skip to main content


Session

Oral Session 7

Moderators: Krishnamurthy Dvijotham · Dinesh Jayaraman · Eric Nalisnick

Abstract:
Chat is not available.

Wed 5 May 3:00 - 3:15 PDT

Oral
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Alexey Dosovitskiy · Lucas Beyer · Alexander Kolesnikov · Dirk Weissenborn · Xiaohua Zhai · Thomas Unterthiner · Mostafa Dehghani · Matthias Minderer · Georg Heigold · Sylvain Gelly · Jakob Uszkoreit · Neil Houlsby

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

Wed 5 May 3:15 - 3:30 PDT

Oral
Rethinking Attention with Performers

Krzysztof Choromanski · Valerii Likhosherstov · David Dohan · Xingyou Song · Georgiana-Andreea Gane · Tamas Sarlos · Peter Hawkins · Jared Q Davis · Afroz Mohiuddin · Lukasz Kaiser · David Belanger · Lucy J Colwell · Adrian Weller

We introduce Performers, Transformer architectures which can estimate regular (softmax) full-rank-attention Transformers with provable accuracy, but using only linear (as opposed to quadratic) space and time complexity, without relying on any priors such as sparsity or low-rankness. To approximate softmax attention-kernels, Performers use a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+), which may be of independent interest for scalable kernel methods. FAVOR+ can also be used to efficiently model kernelizable attention mechanisms beyond softmax. This representational power is crucial to accurately compare softmax with other kernels for the first time on large-scale tasks, beyond the reach of regular Transformers, and investigate optimal attention-kernels. Performers are linear architectures fully compatible with regular Transformers and with strong theoretical guarantees: unbiased or nearly-unbiased estimation of the attention matrix, uniform convergence and low estimation variance. We tested Performers on a rich set of tasks stretching from pixel-prediction through text models to protein sequence modeling. We demonstrate competitive results with other examined efficient sparse and dense attention methods, showcasing effectiveness of the novel attention-learning paradigm leveraged by Performers.

Wed 5 May 3:30 - 3:45 PDT

Oral
Share or Not? Learning to Schedule Language-Specific Capacity for Multilingual Translation

Biao Zhang · Ankur Bapna · Rico Sennrich · Orhan Firat

Using a mix of shared and language-specific (LS) parameters has shown promise in multilingual neural machine translation (MNMT), but the question of when and where LS capacity matters most is still under-studied. We offer such a study by proposing conditional language-specific routing (CLSR). CLSR employs hard binary gates conditioned on token representations to dynamically select LS or shared paths. By manipulating these gates, it can schedule LS capacity across sub-layers in MNMT subject to the guidance of translation signals and budget constraints. Moreover, CLSR can easily scale up to massively multilingual settings. Experiments with Transformer on OPUS-100 and WMT datasets show that: 1) MNMT is sensitive to both the amount and the position of LS modeling: distributing 10%-30% LS computation to the top and/or bottom encoder/decoder layers delivers the best performance; and 2) one-to-many translation benefits more from CLSR compared to many-to-one translation, particularly with unbalanced training data. Our study further verifies the trade-off between the shared capacity and LS capacity for multilingual translation. We corroborate our analysis by confirming the soundness of our findings as foundation of our improved multilingual Transformers. Source code and models are available at https://github.com/googleinterns/cct-m4.

Wed 5 May 3:45 - 3:55 PDT

Spotlight
Support-set bottlenecks for video-text representation learning

Mandela Patrick · Po-Yao Huang · Yuki Asano · Florian Metze · Alexander G Hauptmann · Joao F. Henriques · Andrea Vedaldi

The dominant paradigm for learning video-text representations – noise contrastive learning – increases the similarity of the representations of pairs of samples that are known to be related, such as text and video from the same sample, and pushes away the representations of all other pairs. We posit that this last behaviour is too strict, enforcing dissimilar representations even for samples that are semantically-related – for example, visually similar videos or ones that share the same depicted action. In this paper, we propose a novel method that alleviates this by leveraging a generative model to naturally push these related samples together: each sample’s caption must be reconstructed as a weighted combination of a support set of visual representations. This simple idea ensures that representations are not overly-specialized to individual samples, are reusable across the dataset, and results in representations that explicitly encode semantics shared between samples, unlike noise contrastive learning. Our proposed method outperforms others by a large margin on MSR-VTT, VATEX, ActivityNet, and MSVD for video-to-text and text-to-video retrieval.

Wed 5 May 3:55 - 4:05 PDT

Q&A
Q&A

Wed 5 May 4:05 - 4:20 PDT

Oral
Getting a CLUE: A Method for Explaining Uncertainty Estimates

Javier Antorán · Umang Bhatt · Tameem Adel · Adrian Weller · José Miguel Hernández Lobato

Both uncertainty estimation and interpretability are important factors for trustworthy machine learning systems. However, there is little work at the intersection of these two areas. We address this gap by proposing a novel method for interpreting uncertainty estimates from differentiable probabilistic models, like Bayesian Neural Networks (BNNs). Our method, Counterfactual Latent Uncertainty Explanations (CLUE), indicates how to change an input, while keeping it on the data manifold, such that a BNN becomes more confident about the input's prediction. We validate CLUE through 1) a novel framework for evaluating counterfactual explanations of uncertainty, 2) a series of ablation experiments, and 3) a user study. Our experiments show that CLUE outperforms baselines and enables practitioners to better understand which input patterns are responsible for predictive uncertainty.

Wed 5 May 4:20 - 4:30 PDT

Spotlight
Influence Estimation for Generative Adversarial Networks

Naoyuki Terashita · Hiroki Ohashi · Yuichi Nonaka · Takashi Kanemaru

Identifying harmful instances, whose absence in a training dataset improves model performance, is important for building better machine learning models. Although previous studies have succeeded in estimating harmful instances under supervised settings, they cannot be trivially extended to generative adversarial networks (GANs). This is because previous approaches require that (i) the absence of a training instance directly affects the loss value and that (ii) the change in the loss directly measures the harmfulness of the instance for the performance of a model. In GAN training, however, neither of the requirements is satisfied. This is because, (i) the generator’s loss is not directly affected by the training instances as they are not part of the generator's training steps, and (ii) the values of GAN's losses normally do not capture the generative performance of a model. To this end, (i) we propose an influence estimation method that uses the Jacobian of the gradient of the generator's loss with respect to the discriminator’s parameters (and vice versa) to trace how the absence of an instance in the discriminator’s training affects the generator’s parameters, and (ii) we propose a novel evaluation scheme, in which we assess harmfulness of each training instance on the basis of how GAN evaluation metric (e.g., inception score) is expected to change due to the removal of the instance. We experimentally verified that our influence estimation method correctly inferred the changes in GAN evaluation metrics. We also demonstrated that the removal of the identified harmful instances effectively improved the model’s generative performance with respect to various GAN evaluation metrics.

Wed 5 May 4:30 - 4:40 PDT

Spotlight
Stabilized Medical Image Attacks

Gege Qi · Lijun GONG · Yibing Song · Kai Ma · Yefeng Zheng

Convolutional Neural Networks (CNNs) have advanced existing medical systems for automatic disease diagnosis. However, a threat to these systems arises that adversarial attacks make CNNs vulnerable. Inaccurate diagnosis results make a negative influence on human healthcare. There is a need to investigate potential adversarial attacks to robustify deep medical diagnosis systems. On the other side, there are several modalities of medical images (e.g., CT, fundus, and endoscopic image) of which each type is significantly different from others. It is more challenging to generate adversarial perturbations for different types of medical images. In this paper, we propose an image-based medical adversarial attack method to consistently produce adversarial perturbations on medical images. The objective function of our method consists of a loss deviation term and a loss stabilization term. The loss deviation term increases the divergence between the CNN prediction of an adversarial example and its ground truth label. Meanwhile, the loss stabilization term ensures similar CNN predictions of this example and its smoothed input. From the perspective of the whole iterations for perturbation generation, the proposed loss stabilization term exhaustively searches the perturbation space to smooth the single spot for local optimum escape. We further analyze the KL-divergence of the proposed loss function and find that the loss stabilization term makes the perturbations updated towards a fixed objective spot while deviating from the ground truth. This stabilization ensures the proposed medical attack effective for different types of medical images while producing perturbations in small variance. Experiments on several medical image analysis benchmarks including the recent COVID-19 dataset show the stability of the proposed method.

Wed 5 May 4:40 - 4:50 PDT

Spotlight
Deep Neural Network Fingerprinting by Conferrable Adversarial Examples

Nils Lukas · Yuxuan Zhang · Florian Kerschbaum

In Machine Learning as a Service, a provider trains a deep neural network and gives many users access. The hosted (source) model is susceptible to model stealing attacks, where an adversary derives a surrogate model from API access to the source model. For post hoc detection of such attacks, the provider needs a robust method to determine whether a suspect model is a surrogate of their model. We propose a fingerprinting method for deep neural network classifiers that extracts a set of inputs from the source model so that only surrogates agree with the source model on the classification of such inputs. These inputs are a subclass of transferable adversarial examples which we call conferrable adversarial examples that exclusively transfer with a target label from a source model to its surrogates. We propose a new method to generate these conferrable adversarial examples. We present an extensive study on the irremovability of our fingerprint against fine-tuning, weight pruning, retraining, retraining with different architectures, three model extraction attacks from related work, transfer learning, adversarial training, and two new adaptive attacks. Our fingerprint is robust against distillation, related model extraction attacks, and even transfer learning when the attacker has no access to the model provider's dataset. Our fingerprint is the first method that reaches a ROC AUC of 1.0 in verifying surrogates, compared to a ROC AUC of 0.63 by previous fingerprints.

Wed 5 May 4:50 - 5:00 PDT

Q&A
Q&A

Wed 5 May 5:00 - 5:15 PDT

Oral
Learning Cross-Domain Correspondence for Control with Dynamics Cycle-Consistency

Qiang Zhang · Tete Xiao · Alexei Efros · Lerrel Pinto · Xiaolong Wang

At the heart of many robotics problems is the challenge of learning correspondences across domains. For instance, imitation learning requires obtaining correspondence between humans and robots; sim-to-real requires correspondence between physics simulators and real hardware; transfer learning requires correspondences between different robot environments. In this paper, we propose to learn correspondence across such domains emphasizing on differing modalities (vision and internal state), physics parameters (mass and friction), and morphologies (number of limbs). Importantly, correspondences are learned using unpaired and randomly collected data from the two domains. We propose dynamics cycles that align dynamic robotic behavior across two domains using a cycle consistency constraint. Once this correspondence is found, we can directly transfer the policy trained on one domain to the other, without needing any additional fine-tuning on the second domain. We perform experiments across a variety of problem domains, both in simulation and on real robots. Our framework is able to align uncalibrated monocular video of a real robot arm to dynamic state-action trajectories of a simulated arm without paired data. Video demonstrations of our results are available at: https://sites.google.com/view/cycledynamics .

Wed 5 May 5:15 - 5:25 PDT

Spotlight
Benefit of deep learning with non-convex noisy gradient descent: Provable excess risk bound and superiority to kernel methods

Taiji Suzuki · Akiyama Shunta

Establishing a theoretical analysis that explains why deep learning can outperform shallow learning such as kernel methods is one of the biggest issues in the deep learning literature. Towards answering this question, we evaluate excess risk of a deep learning estimator trained by a noisy gradient descent with ridge regularization on a mildly overparameterized neural network, and discuss its superiority to a class of linear estimators that includes neural tangent kernel approach, random feature model, other kernel methods, $k$-NN estimator and so on. We consider a teacher-student regression model, and eventually show that {\it any} linear estimator can be outperformed by deep learning in a sense of the minimax optimal rate especially for a high dimension setting. The obtained excess bounds are so-called fast learning rate which is faster than $O(1/\sqrt{n})$ that is obtained by usual Rademacher complexity analysis. This discrepancy is induced by the non-convex geometry of the model and the noisy gradient descent used for neural network training provably reaches a near global optimal solution even though the loss landscape is highly non-convex. Although the noisy gradient descent does not employ any explicit or implicit sparsity inducing regularization, it shows a preferable generalization performance that dominates linear estimators.

Wed 5 May 5:25 - 5:35 PDT

Spotlight
Tent: Fully Test-Time Adaptation by Entropy Minimization

Dequan Wang · Evan Shelhamer · Shaoteng Liu · Bruno Olshausen · trevor darrell

A model must adapt itself to generalize to new and different data during testing. In this setting of fully test-time adaptation the model has only the test data and its own parameters. We propose to adapt by test entropy minimization (tent): we optimize the model for confidence as measured by the entropy of its predictions. Our method estimates normalization statistics and optimizes channel-wise affine transformations to update online on each batch. Tent reduces generalization error for image classification on corrupted ImageNet and CIFAR-10/100 and reaches a new state-of-the-art error on ImageNet-C. Tent handles source-free domain adaptation on digit recognition from SVHN to MNIST/MNIST-M/USPS, on semantic segmentation from GTA to Cityscapes, and on the VisDA-C benchmark. These results are achieved in one epoch of test-time optimization without altering training.

Wed 5 May 5:35 - 5:45 PDT

Spotlight
Neural Approximate Sufficient Statistics for Implicit Models

Yanzhi Chen · Dinghuai Zhang · Michael U Gutmann · Aaron Courville · Zhanxing Zhu

We consider the fundamental problem of how to automatically construct summary statistics for implicit generative models where the evaluation of the likelihood function is intractable but sampling data from the model is possible. The idea is to frame the task of constructing sufficient statistics as learning mutual information maximizing representations of the data with the help of deep neural networks. The infomax learning procedure does not need to estimate any density or density ratio. We apply our approach to both traditional approximate Bayesian computation and recent neural likelihood methods, boosting their performance on a range of tasks.

Wed 5 May 5:45 - 5:55 PDT

Spotlight
Implicit Normalizing Flows

Cheng Lu · Jianfei Chen · Chongxuan Li · Qiuhao Wang · Jun Zhu

Normalizing flows define a probability distribution by an explicit invertible transformation $\boldsymbol{\mathbf{z}}=f(\boldsymbol{\mathbf{x}})$. In this work, we present implicit normalizing flows (ImpFlows), which generalize normalizing flows by allowing the mapping to be implicitly defined by the roots of an equation $F(\boldsymbol{\mathbf{z}}, \boldsymbol{\mathbf{x}})= \boldsymbol{\mathbf{0}}$. ImpFlows build on residual flows (ResFlows) with a proper balance between expressiveness and tractability. Through theoretical analysis, we show that the function space of ImpFlow is strictly richer than that of ResFlows. Furthermore, for any ResFlow with a fixed number of blocks, there exists some function that ResFlow has a non-negligible approximation error. However, the function is exactly representable by a single-block ImpFlow. We propose a scalable algorithm to train and draw samples from ImpFlows. Empirically, we evaluate ImpFlow on several classification and density modeling tasks, and ImpFlow outperforms ResFlow with a comparable amount of parameters on all the benchmarks.

Wed 5 May 5:55 - 6:08 PDT

Q&A
Q&A