Skip to yearly menu bar Skip to main content


Poster

Tag2Text: Guiding Vision-Language Model via Image Tagging

Xinyu Huang · Youcai Zhang · Jinyu Ma · Weiwei Tian · Rui Feng · Yuejie Zhang · Yaqian Li · Yandong Guo · Lei Zhang

Halle B

Abstract:

This paper presents Tag2Text, a vision language pre-training (VLP) framework, which introduces image tagging into vision-language models to guide the learning of visual-linguistic features. In contrast to prior works which utilize object tags either manually labeled or automatically detected with a limited detector, our approach utilizes tags parsed from its paired text to learn an image tagger and meanwhile provides guidance to vision-language models. Given that, Tag2Text can utilize large-scale annotation-free image tags in accordance with image-text pairs, and provides more diverse tag categories beyond objects. Strikingly, Tag2Text showcases the ability of a foundational image tagging model, with superior zero-shot performance even comparable to full supervision manner. Moreover, by leveraging tagging guidance, Tag2Text effectively enhances the performance of vision-language models on both generation-based and alignment-based tasks. Across a wide range of downstream benchmarks, Tag2Text achieves state-of-the-art results with similar model sizes and data scales, demonstrating the efficacy of the proposed tagging guidance.

Chat is not available.