Skip to yearly menu bar Skip to main content


Poster

Learning with Mixture of Prototypes for Out-of-Distribution Detection

Haodong Lu · Dong Gong · Shuo Wang · Jason Xue · Lina Yao · Kristen Moore

Halle B
[ ]
Fri 10 May 1:45 a.m. PDT — 3:45 a.m. PDT

Abstract:

Out-of-distribution (OOD) detection aims to detect testing samples far away from the in-distribution (ID) training data, which is crucial for the safe deployment of machine learning models in the real world. Distance-based OOD detection methods have emerged with enhanced deep representation learning. They identify unseen OOD samples by measuring their distances from ID class centroids or prototypes. However, existing approaches learn the representation relying on oversimplified data assumptions, e.g. modeling ID data of each class with one centroid class prototype or using loss functions not designed for OOD detection, which overlook the natural diversities within the data. Naively enforcing data samples of each class to be compact around only one prototype leads to inadequate modeling of realistic data and limited performance. To tackle these issues, we propose PrototypicAl Learning with a Mixture of prototypes (PALM) that models each class with multiple prototypes to capture the sample diversities, which learns more faithful and compact samples embeddings for enhanching OOD detection. Our method automatically identifies and dynamically updates prototypes, assigning each sample to a subset of prototypes via reciprocal neighbor soft assignment weights. To learn embeddings with multiple prototypes, PALM optimizes a maximum likelihood estimation (MLE) loss to encourage the sample embeddings to compact around the associated prototypes, as well as a contrastive loss on all prototypes to enhance intra-class compactness and inter-class discrimination at the prototype level. Compared to previous methods with prototypes, the proposed mixture prototype modeling of PALM promotes the representations of each ID class to be more compact and separable from others and the unseen OOD samples, resulting in more reliable OOD detection. Moreover, the automatic estimation of prototypes enables our approach to be extended to the challenging OOD detection task with unlabelled ID data. Extensive experiments demonstrate the superiority of PALM over previous methods, achieving state-of-the-art average AUROC performance of 93.82 on the challenging CIFAR-100 benchmark.

Chat is not available.