Skip to yearly menu bar Skip to main content


Poster

Tailoring Self-Rationalizers with Multi-Reward Distillation

Sahana Ramnath · Brihi Joshi · Skyler Hallinan · Ximing Lu · Liunian Li · Aaron Chan · Jack Hessel · Yejin Choi · Xiang Ren

Halle B

Abstract:

Large language models (LMs) are capable of generating free-text rationales to aid question answering. However, prior work 1) suggests that useful self-rationalization is emergent only at significant scales (e.g., 175B parameter GPT-3); and 2) focuses largely on downstream performance, ignoring the semantics of the rationales themselves, e.g., are they faithful, true, and helpful for humans? In this work, we enable small-scale LMs (∼200x smaller than GPT-3) to generate rationales that not only improve downstream task performance, but are also more plausible, consistent, and diverse, assessed both by automatic and human evaluation. Our method, MaRio (Multi-rewArd RatIOnalization), is a multi-reward conditioned self-rationalization algorithm that optimizes multiple distinct properties like plausibility, diversity and consistency. Results on three difficult question-answering datasets StrategyQA, QuaRel and OpenBookQA show that not only does MaRio improve task accuracy, but it also improves the self-rationalization quality of small LMs across the aforementioned axes better than a supervised fine-tuning (SFT) baseline. Extensive human evaluations confirm that MaRio rationales are preferred vs. SFT rationales, as well as qualitative improvements in plausibility and consistency.

Chat is not available.