Skip to yearly menu bar Skip to main content


Poster

NP-GL: Extending Power of Nature from Binary Problems to Real-World Graph Learning

Chunshu Wu · Ruibing Song · Chuan Liu · Yunan Yang · Ang Li · Michael Huang · Tong Geng

Halle B
[ ]
Thu 9 May 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract: Nature performs complex computations constantly at clearly lower cost and higher performance than digital computers. It is crucial to understand how to harness the unique computational power of nature in Machine Learning (ML). In the past decade, besides the development of Neural Networks (NNs), the community has also relentlessly explored nature-powered ML paradigms. Although most of them are still predominantly theoretical, a new practical paradigm enabled by the recent advent of CMOS-compatible room-temperature nature-based computers has emerged. By harnessing the nature's power of entropy increase, this paradigm can solve binary learning problems delivering immense speedup and energy savings compared with NNs, while maintaining comparable accuracy. Regrettably, its values to the real world are highly constrained by its binary nature. A clear pathway to its extension to real-valued problems remains elusive. This paper aims to unleash this pathway by proposing a novel end-to-end Nature-Powered Graph Learning (NP-GL) framework. Specifically, through a three-dimensional co-design, NP-GL can leverage the nature's power of entropy increase to efficiently solve real-valued graph learning problems. Experimental results across 4 real-world applications with 6 datasets demonstrate that NP-GL delivers, on average, $6.97\times 10^3$ speedup and $10^5$ energy consumption reduction with comparable or even higher accuracy than Graph Neural Networks (GNNs).

Chat is not available.