Skip to yearly menu bar Skip to main content


Poster

Copula Conformal prediction for multi-step time series prediction

Sophia Sun · Rose Yu

Halle B

Abstract:

Accurate uncertainty measurement is a key step to building robust and reliable machine learning systems. Conformal prediction is a distribution-free uncertainty quantification algorithm popular for its ease of implementation, statistical coverage guarantees, and versatility for underlying forecasters. However, existing conformal prediction algorithms for time series are limited to single-step prediction without considering the temporal dependency. In this paper we propose the Copula Conformal Prediction algorithm for multivariate, multi-step Time Series forecasting, CopulaCPTS. We prove that CopulaCPTS has finite sample validity guarantee. On four synthetic and real-world multivariate time series datasets, we show that CopulaCPTS produces more calibrated and efficient confidence intervals for multi-step prediction tasks than existing techniques.

Chat is not available.