Skip to yearly menu bar Skip to main content


Poster

Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo

Haque Ishfaq · Qingfeng Lan · Pan Xu · A. Rupam Mahmood · Doina Precup · anima anandkumar · Kamyar Azizzadenesheli

Halle B

Abstract: We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q-function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q-function, which makes our approach easy to deploy in deep RL. Our theoretical analysis shows that, in the linear Markov decision process (linear MDP) setting, the proposed method has a regret bound of $\tilde{O}(d^{3/2}H^{5/2}\sqrt{T})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $T$ is the total number of steps. We apply the proposed approach to deep RL, by using the Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.

Chat is not available.