Skip to yearly menu bar Skip to main content


Poster

Kalman Filter Online Learning from non-Stationary Data

Michalis Titsias · Alexandre Galashov · Amal Rannen-Triki · Razvan Pascanu · Yee Whye Teh · Jorg Bornschein

Halle B
[ ]
Fri 10 May 1:45 a.m. PDT — 3:45 a.m. PDT

Abstract:

In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps. Important challenges in OCL are concerned with automatic adaptation to the particular non-stationary structure of the data, and with quantification of predictive uncertainty. Motivated by these challenges we introduce a probabilistic Bayesian online learning model by using a (possibly pretrained) neural representation and a state space model over the linear predictor weights. Non-stationarity over the linear predictor weights is modelled using a “parameter drift” transition density, parametrized by a coefficient that quantifies forgetting. Inference in the model is implemented with efficient Kalman filter recursions which track the posterior distribution over the linear weights, while online SGD updates over the transition dynamics coefficient allows to adapt to the non-stationarity seen in data. While the framework is developed assuming a linear Gaussian model, we also extend it to deal with classification problems and for fine-tuning the deep learning representation. In a set of experiments in multi-class classification using data sets such as CIFAR-100 and CLOC we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.

Chat is not available.