Skip to yearly menu bar Skip to main content


Poster

Deep Temporal Graph Clustering

Meng Liu · Yue Liu · KE LIANG · Wenxuan Tu · Siwei Wang · sihang zhou · Xinwang Liu

Halle B

Abstract:

Deep graph clustering has recently received significant attention due to its ability to enhance the representation learning capabilities of models in unsupervised scenarios. Nevertheless, deep clustering for temporal graphs, which could capture crucial dynamic interaction information, has not been fully explored. It means that in many clustering-oriented real-world scenarios, temporal graphs can only be processed as static graphs. This not only causes the loss of dynamic information but also triggers huge computational consumption. To solve the problem, we propose a general framework for deep Temporal Graph Clustering called TGC, which adjusts deep clustering techniques (clustering assignment distribution and adjacency matrix reconstruction) to suit the interaction sequence-based batch-processing pattern of temporal graphs. In addition, we discuss differences between temporal graph clustering and existing static graph clustering from several levels. To verify the superiority of the proposed framework TGC, we conduct extensive experiments. The experimental results show that temporal graph clustering enables more flexibility in finding a balance between time and space requirements, and our framework can effectively improve the performance of existing temporal graph learning methods. Our code is included in the supplementary material and will be released after publication.

Chat is not available.