Skip to yearly menu bar Skip to main content


Poster

FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods

Xiaotian Han · Jianfeng Chi · Yu Chen · Qifan Wang · Han Zhao · Na Zou · Xia Hu

Halle B
[ ]
Thu 9 May 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract: This paper introduces the Fair Fairness Benchmark (\textsf{FFB}), a benchmarking framework for in-processing group fairness methods. Ensuring fairness in machine learning is critical for ethical and legal compliance. However, there exist challenges in comparing and developing of fairness methods due to inconsistencies in experimental settings, lack of accessible algorithmic implementations, and limited extensibility of current fairness packages and tools. To address these issues, we introduce an open-source, standardized benchmark for evaluating in-processing group fairness methods and provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness. This work offers the following key contributions: the provision of flexible, extensible, minimalistic, and research-oriented open-source code; the establishment of unified fairness method benchmarking pipelines; and extensive benchmarking, which yields key insights from $\mathbf{45,079}$ experiments. We believe our work will significantly facilitate the growth and development of the fairness research community.

Chat is not available.