Skip to yearly menu bar Skip to main content


Poster

Plug-and-Play: An Efficient Post-training Pruning Method for Large Language Models

Yingtao Zhang · Haoli Bai · Jialin Zhao · Haokun Lin · LU HOU · Carlo Vittorio Cannistraci

Halle B

Abstract:

With the rapid growth of large language models (LLMs), there is increasing demand for memory and computation for LLMs. Recent efforts on post-training pruning of LLMs aim to reduce the model size and computation, yet the performance is still sub-optimal. In this paper, we present a plug-and-play solution for post-training pruning of LLMs.The proposed solution has two innovative components: 1) Relative Importance and Activations (RIA), a new pruning metric that jointly considers the weight and activations efficiently on LLMs; and 2) Channel Permutation, a new approach to maximally preserve important weights under N:M sparsity.The proposed two components can be readily combined to further enhance the N:M structuredly pruned LLMs.Our empirical experiments show that RIA alone can already surpass all existing post-training pruning methods on prevalent LLMs, e.g., LLaMA ranging from 7B to 65B. Furthermore, N:M structured pruning with channel permutation can even outperform the original LLaMA2 70B on zero-shot tasks, together with practical speed-up on specific hardware.

Chat is not available.