Poster
PAE: Reinforcement Learning from External Knowledge for Efficient Exploration
Zhe Wu · Haofei Lu · Junliang Xing · You Wu · Renye Yan · Yaozhong Gan · Yuanchun Shi
Halle B
Abstract:
Human intelligence is adept at absorbing valuable insights from external knowledge.This capability is equally crucial for artificial intelligence. In contrast, classical reinforcement learning agents lack such capabilities and often resort to extensive trial and error to explore the environment. This paper introduces $\textbf{PAE}$: $\textbf{P}$lanner-$\textbf{A}$ctor-$\textbf{E}$valuator, a novel framework for teaching agents to $\textit{learn to absorb external knowledge}$. PAE integrates the Planner's knowledge-state alignment mechanism, the Actor's mutual information skill control, and the Evaluator's adaptive intrinsic exploration reward to achieve 1) effective cross-modal information fusion, 2) enhanced linkage between knowledge and state, and 3) hierarchical mastery of complex tasks.Comprehensive experiments in six challenging sparse reward environments demonstrate PAE's superior exploration efficiency with good interpretability compared to existing methods. We provide the source code in the supplementary for further study and application.
Chat is not available.