Skip to yearly menu bar Skip to main content


Poster

The Need for Speed: Pruning Transformers with One Recipe

Samir Khaki · Konstantinos Plataniotis

Halle B
[ ] [ Project Page ]
Wed 8 May 7:30 a.m. PDT — 9:30 a.m. PDT

Abstract: We introduce the $\textbf{O}$ne-shot $\textbf{P}$runing $\textbf{T}$echnique for $\textbf{I}$nterchangeable $\textbf{N}$etworks ($\textbf{OPTIN}$) framework as a tool to increase the efficiency of pre-trained transformer architectures $\textit{without requiring re-training}$. Recent works have explored improving transformer efficiency, however often incur computationally expensive re-training procedures or depend on architecture-specific characteristics, thus impeding practical wide-scale adoption. To address these shortcomings, the OPTIN framework leverages intermediate feature distillation, capturing the long-range dependencies of model parameters (coined $\textit{trajectory}$), to produce state-of-the-art results on natural language, image classification, transfer learning, and semantic segmentation tasks $\textit{without re-training}$. Given a FLOP constraint, the OPTIN framework will compress the network while maintaining competitive accuracy performance and improved throughput. Particularly, we show a $\leq 2$% accuracy degradation from NLP baselines and a $0.5$% improvement from state-of-the-art methods on image classification at competitive FLOPs reductions. We further demonstrate the generalization of tasks and architecture with comparative performance using Mask2Former for semantic segmentation and cnn-style networks. OPTIN presents one of the first one-shot efficient frameworks for compressing transformer architectures that generalizes well across different class domains, in particular: natural language and image-related tasks, without $\textit{re-training}$.

Chat is not available.