Poster
Confidence-aware Reward Optimization for Fine-tuning Text-to-Image Models
Kyuyoung Kim · Jongheon Jeong · Minyong An · Mohammad Ghavamzadeh · Krishnamurthy Dvijotham · Jinwoo Shin · Kimin Lee
Halle B
Fine-tuning text-to-image models using reward functions trained on human feedback data has emerged as a powerful approach for aligning model behavior with human intent. However, excessive optimization with such reward models, which are only proxy objectives, can degrade the performance of the fine-tuned models, a phenomenon commonly referred to as reward overoptimization. We introduce the Text-Image Alignment Assessment (TIA2) benchmark, a diverse collection of text prompts, images, and human annotations, for studying the issue in depth. We evaluate several state-of-the-art reward models for text-to-image generation on our benchmark and find that they are often not well-aligned with human assessment. We empirically demonstrate that overoptimization can occur when a poorly aligned reward model is used as a fine-tuning objective. To address this, we introduce a simple method, TextNorm, for inducing confidence calibration in reward models by normalizing the scores across prompts that are semantically different from the original prompt. We demonstrate that using the confidence-calibrated scores in fine-tuning effectively reduces the risk of overoptimization.