Skip to yearly menu bar Skip to main content


Poster

A Cognitive Model for Learning Abstract Relational Structures from Memory-based Decision-Making Tasks

Haruo Hosoya

Halle B

Abstract:

Motivated by a recent neuroscientific hypothesis, some theoretical studies have accounted for neural cognitive maps in the rodent hippocampal formation as a representation of the general relational structure across task environments. However, despite their remarkable results, it is unclear whether their account can be extended to more general settings beyond spatial random-walk tasks in 2D environments. To address this question, we construct a novel cognitive model that performs memory-based relational decision-making tasks, inspired by previous human studies, for learning abstract structures in non-spatial relations. Building on previous approaches of modular architecture, we develop a learning algorithm that performs reward-guided search for representation of abstract relations, while dynamically maintaining their binding to concrete entities using our specific memory mechanism enabling content replacement. Our experiments show (i) the capability of our model to capture relational structures that can generalize over new domains with unseen entities, (ii) the difficulty of our task that leads previous models, including Neural Turing Machine and vanilla Transformer, to complete failure, and (iii) the similarity of performance and internal representations of our model to recent human behavioral and fMRI experimental data in the human hippocampal formation.

Chat is not available.