Skip to yearly menu bar Skip to main content


Poster

Robust Model Based Reinforcement Learning Using $\mathcal{L}_1$ Adaptive Control

Minjun Sung · Sambhu Harimanas Karumanchi · Aditya Gahlawat · Naira HOVAKIMYAN

Halle B

Abstract: We introduce $\mathcal{L}_1$-MBRL, a control-theoretic augmentation scheme for Model-Based Reinforcement Learning (MBRL) algorithms. Unlike model-free approaches, MBRL algorithms learn a model of the transition function using data and use it to design a control input. Our approach generates an approximate control-affine model of the learned transition function according to the switching law. Using the approximate model, control input produced by the underlying MBRL is perturbed by the $\mathcal{L}_1$ adaptive control, which is designed to enhance the robustness of the system against uncertainties. Importantly, this approach is agnostic to the choice of MBRL algorithm, which enables the utilization of the scheme in various MBRL algorithms. Our method exhibits superior performance and sample efficiency on multiple MuJoCo environments, both with and without system noise, as demonstrated through numerical simulations.

Chat is not available.