Skip to yearly menu bar Skip to main content


Poster

Attention-based Iterative Decomposition for Tensor Product Representation

TAEWON PARK · inchul choi · Minho Lee

Halle B

Abstract:

In recent research, Tensor Product Representation (TPR) is applied for the systematic generalization task of deep neural networks by learning the compositional structure of data. However, such prior works show limited performance in discovering and representing the symbolic structure from unseen test data because of the incomplete bindings to the structural representations. In this work, we propose an Attention-based Iterative Decomposition (AID) module that can effectively improve the binding for the structured representations encoded from the sequential input features with TPR. Our AID can be easily adapted to any TPR-based model and provides enhanced systematic decomposition through a competitive attention mechanism between input features and structured representations. In our experiments, AID shows effectiveness by significantly improving the performance of TPR-based prior works on the series of systematic generalization tasks. Moreover, in the quantitative and qualitative evaluations, AID produces more compositional and well-bound structural representations than other works.

Chat is not available.