Poster
L2MAC: Large Language Model Automatic Computer for Unbounded Code Generation
Samuel Holt · Max Ruiz Luyten · Mihaela van der Schaar
Halle B
Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and logically consistent code. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long code generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based stored-program automatic computer for long and consistent code generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction is executed by a separate LLM instance, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate virtually unbounded code structures, bypassing the constraints of the finite context window while producing code that fulfills complex user-specified requirements. We empirically show that L2MAC succeeds in generating large code bases for system design tasks where other coding methods fall short in implementing user requirements and provide insight into the reasons for this performance gap.