Skip to yearly menu bar Skip to main content


Spotlight Poster

De novo Protein Design Using Geometric Vector Field Networks

weian mao · Zheng Sun · Muzhi Zhu · Shuaike Shen · Lin Yuanbo Wu · Hao Chen · Chunhua Shen

Halle B

Abstract: Advances like protein diffusion have marked revolutionary progress in $\textit{de novo}$ protein design, a central topic in life science. These methods typically depend on protein structure encoders to model residue backbone frames, where atoms do not exist. Most prior encoders rely on atom-wise features, such as angles and distances between atoms, which are not available in this context. Only a few basic encoders, like IPA, have been proposed for this scenario, exposing the frame modeling as a bottleneck. In this work, we introduce the Vector Field Network (VFN), that enables network layers to perform learnable vector computations between coordinates of frame-anchored virtual atoms, thus achieving a higher capability for modeling frames. The vector computation operates in a manner similar to a linear layer, with each input channel receiving 3D virtual atom coordinates instead of scalar values. The multiple feature vectors output by the vector computation are then used to update the residue representations and virtual atom coordinates via attention aggregation. Remarkably, VFN also excels in modeling both frames and atoms, as the real atoms can be treated as the virtual atoms for modeling, positioning VFN as a potential $\textit{universal encoder}$. In protein diffusion (frame modeling), VFN exhibits a impressive performance advantage over IPA, excelling in terms of both designability ($\textbf{67.04}$\% vs. 53.58\%) and diversity ($\textbf{66.54}$\% vs. 51.98\%). In inverse folding(frame and atom modeling), VFN outperforms the previous SoTA model, PiFold ($\textbf{54.7}$\% vs. 51.66\%), on sequence recovery rate; we also propose a method of equipping VFN with the ESM model, which significantly surpasses the previous ESM-based SoTA ($\textbf{62.67}$\% vs. 55.65\%), LM-Design, by a substantial margin.

Chat is not available.