Skip to yearly menu bar Skip to main content


Poster

BooookScore: A systematic exploration of book-length summarization in the era of LLMs

Yapei Chang · Kyle Lo · Tanya Goyal · Mohit Iyyer

Halle B
[ ]
Wed 8 May 7:30 a.m. PDT — 9:30 a.m. PDT
 
Oral presentation: Oral 4A
Wed 8 May 6:45 a.m. PDT — 7:30 a.m. PDT

Abstract: Summarizing book-length documents ($>$100K tokens) that exceed the context window size of large language models (LLMs) requires first breaking the input document into smaller chunks and then prompting an LLM to merge, update, and compress chunk-level summaries. Despite the complexity and importance of this task, it has yet to be meaningfully studied due to the challenges of evaluation: existing book-length summarization datasets (e.g., BookSum) are in the pretraining data of most public LLMs, and existing evaluation methods struggle to capture errors made by modern LLM summarizers. In this paper, we present the first study of the coherence of LLM-based book-length summarizers implemented via two prompting workflows: (1) hierarchically merging chunk-level summaries, and (2) incrementally updating a running summary. We obtain 1193 fine-grained human annotations on GPT-4 generated summaries of 100 recently-published books and identify eight common types of coherence errors made by LLMs. Because human evaluation is expensive and time-consuming, we develop an automatic metric, BooookScore, that measures the proportion of sentences in a summary that do not contain any of the identified error types. BooookScore has high agreement with human annotations and allows us to systematically evaluate the impact of many other critical parameters (e.g., chunk size, base LLM) while saving \$15K and 500 hours in human evaluation costs. We find that closed-source LLMs such as GPT-4 and Claude 2 produce summaries with higher BooookScore than the oft-repetitive ones generated by LLaMA 2. Incremental updating yields lower BooookScore but higher level of detail than hierarchical merging, a trade-off sometimes preferred by human annotators. We release code and annotations after blind review to spur more principled research on book-length summarization.

Chat is not available.